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Variants of the P3 event-related potential operate as indicators
of distinct mechanisms contributing to problematic alcohol use
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Considerable research has linked relative reduction in the amplitude of the P3 event-related potential (ERP) during cognitive task
performance (i.e., Target-P3) with increased risk of alcohol-related problems. A separate literature indicates that a relative increase in
the amplitude of the P3 elicited by cues signaling alcohol availability (i.e., ACR-P3) also is associated with alcohol use and problems. To
date, no research has integrated these seemingly discrepant findings. Here, we aimed to demonstrate that P3 amplitudes elicited in
different task contexts reflect distinct domains of functioning relevant to problematic alcohol involvement (PAI), and therefore can
inform heterogeneity in the etiology of PAI. 156 emerging adults (61% women; 88%White/Non-Hispanic) completed a mental rotation
task and a picture-viewing task while ERPs were recorded. Participants also completed questionnaire measures of trait disinhibition,
alcohol use, and alcohol-related problems. Findings from regression analyses indicated that (a) Target-P3 was negatively associated
and ACR-P3 was positively associated with a PAI latent variable; (b) the two P3s accounted for unique variance in PAI, beyond that
accounted for by recent drinking; and (c) the association between Target-P3 and PAI—but not ACR-P3 and PAI—was statistically
mediated by trait disinhibition. The present findings highlight the unique contributions of distinct functional domains associated with
disinhibition and incentive salience in the etiology of PAI. Moreover, findings are consistent with a nuanced understanding of the P3
ERP, whereby its specific meaning varies according to the task context in which it is elicited.

Neuropsychopharmacology; https://doi.org/10.1038/s41386-024-01874-7

INTRODUCTION
Among drugs of abuse, alcohol is the most harmful to society [1].
The use of alcohol becomes problematic when it leads to acute
and/or chronic negative consequences [2, 3], as reflected in the
diagnostic criteria for alcohol use disorder (AUD; [4]). Clarifying the
factors that give rise to AUD is critical to ameliorating the costly
toll drinking exacts on society.
Addiction scientists have long recognized that AUD—and

problematic alcohol involvement (PAI) more generally—is highly
heterogeneous both phenotypically (i.e., manifest symptoms vary
considerably across individuals, and within individuals across time)
and etiologically (i.e., there are several neurobehavioral mechan-
isms thought to facilitate PAI; [5–10]). Accounting for PAI’s
etiologic heterogeneity requires approaches that can characterize
distinct neurobehavioral mechanisms within and across indivi-
duals and the shared and unique variance in PAI attributable to
those mechanisms. The current study research addressed this goal
with respect to two posited PAI mechanisms—disinhibition and
incentive salience—represented by different variants of the P3
event-related potential (ERP).

Variants of the P3 ERP as indicators of distinct neurocognitive
functional domains
Numerous studies have demonstrated that relative reduction in
the amplitude of the P3 (or P300) elicited by infrequent targets in

cognitive tasks (i.e., Target-P3) is associated with increased AUD
risk [11–14]. Other research indicates that reduced Target-P3
reflects a broad liability for externalizing psychopathology [15–17],
a dispositional factor involving deficits in inhibitory control (see
also [18]). Evidence from prospective [19] and genetically
informed designs [20–22] indicates that reduced Target-P3
antedates the onset of substance misuse and that its associations
with this and other externalizing problems largely reflect shared
genetic influences.
A separate, emerging literature has identified a different variant

of the P3 that appears more specific to PAI. In contrast to Target-
P3, the P3 elicited by stimuli signaling alcohol availability tends to
be larger in heavier compared to lighter drinkers [23, 24] and
among individuals at heightened AUD risk [25–30]. Variability in
this “alcohol cue-reactivity P3” (ACR-P3) is posited to reflect
individual differences [31] in the incentive salience of alcohol-
related cues [29, 32, 33]. In theory, such differences are acquired
through the repeated pairing of alcohol cues with the experience
of alcohol-related reward [34, 35], reflecting neuroadaptations in
dopaminergic reward processing circuits (e.g., [36–38]). Although
limited data suggest elevated neural reactivity to alcohol images
among alcohol naïve youth with substance use disorder in their
families [39], variation in ACR-P3 and other indices of cue reactivity
is posited mainly to reflect effects of personal drinking experience,
rather than a premorbid liability for AUD.
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Opposing relations of Target-P3 and ACR-P3 with alcohol
problems
The opposing relations that Target-P3 and ACR-P3 exhibit with
PAI might seem surprising given that both P3s are variants of
the same neurophysiological response. Indeed, prior studies
have demonstrated that P3s measured in different cognitive
tasks are moderately correlated (e.g., [40–42]), and that variance
shared among these “cognitive” P3s relates negatively to
trait disinhibition [42, 43]. Related work has shown that P3s
elicited by drug-related cues and P3s elicited by cues depicting
natural reward correlate positively with one another but in
opposing directions with substance use and problems [44–47]—
including findings from the dataset on which the current report
is based [48].
We argue that these seemingly divergent patterns of findings

might be explained in terms of PAI’s etiologic heterogeneity
[6, 7, 9] and differing influences on P3 amplitude. In general, P3
amplitude reflects the perceived salience (significance) of the
eliciting stimuli [49, 50]. Whereas affective images (including
alcohol cues) convey salience via bottom-up motivational features,
stimulus salience in cognitive tasks is conveyed by top-down
relevance to task responding.
Considered within this framework, reduced Target-P3 can be

viewed as a disinhibition-related failure to sufficiently attribute
(top-down) significance to stimuli requiring goal-directed action,
whereas enhanced ACR-P3 reflects over-attribution of (bottom-
up) significance to stimuli representing the promise of alcohol
reward.
Extending this reasoning, we argue that Target-P3 and ACR-P3

index distinct domains of functioning posited to confer
vulnerability for PAI. Specifically, we theorize that Target-P3
reflects the cognitive/executive control domain, whereas ACR-P3
reflects the incentive salience domain [7, 9]. To the extent that
Target-P3 and ACR-P3 reflect divergent etiologic mechanisms,
both should account for unique variance in PAI. Recent research
provides provisional support for this idea, in that ACR-P3 and
Target-P3 contribute separately to prediction of relapse in AUD
[51].

Study aims and hypotheses
Operating from the general theory that Target-P3 and ACR-P3
represent distinct PAI- related etiologic mechanisms, we hypothe-
sized that (1) Target-P3 would relate negatively and ACR-P3
positively to a latent PAI variable, replicating extant research; (2)
Target-P3 and ACR- P3 would mutually suppress one another [51],
such that their unique effects would be larger than their zero-
order correlations with PAI [48]; (3a) the association between
Target-P3 and PAI would be mediated by trait disinhibition, but
(3b) the association between ACR-P3 and PAI would be
independent of disinhibition; (4a) P3s elicited by infrequent,
alcohol-unrelated stimuli across tasks would jointly define a single
latent factor (general P3), (4b) ACR-P3 would exhibit a robust
positive association with this general P3 factor, but separately
from this (i.e., independent of its association with general P3), (4c)
ACR-P3 would also show a significant positive association with PAI.

MATERIALS AND METHODS
Participants
One hundred fifty-six emerging adults (Mage= 21.8, SD= 3.0; 61% women;
88% White/Non-Hispanic), recruited from a large public university and its
surrounding community, were paid $10/hr for participation. All had prior
drinking experience (at least monthly use and at least one binge-drinking
episode in the past year) but no history of AUD treatment or quit attempts
and no current withdrawal symptoms. Due to the nature of the
neurophysiological measures, individuals reporting a history of head
trauma resulting in loss of consciousness for >2min or a neurological
disorder were excluded from participation. All procedures were approved
by the University of Missouri Institutional Review Board.

Self-report measures
Problematic alcohol involvement (PAI). Four measures of problematic
drinking were used to define a latent PAI factor, consisting of: (1) the
number of negative consequences arising from alcohol use within the past
year, quantified via total scores on the 48-item Young Adult Alcohol
Consequences Questionnaire (YAACQ [52, 53]; current study alpha
reliability [α]= 0.97);1 (2) the maximum number of drinks consumed
within one drinking episode in the past year and (3) over the participant’s
lifetime, assessed using items recommended by the National Institute on
Alcohol Abuse and Alcoholism [54]; and (4) scores on the Alcohol Problems
subscale of the Externalizing Spectrum Inventory (ESI [55]; current study
α= 0.78).
In addition, current alcohol use, defined as the product of quantity

(typical number of drinks on drinking days) and frequency (typical number
of drinking days per week) over the past 30 days, was computed for use as
a covariate.

Trait disinhibition. The general propensity toward disinhibited behavior
was operationalized using the 30-item Disinhibition scale of the ESI (22;
current α= 0.97), a measure that has been validated against various
criterion outcomes [21, 42, 56].

P3 Variants
ACR-P3 along with P3s elicited by other appetitive images (nonalcoholic
beverages; high-arousal pleasant scenes) were recorded during a
picture-viewing task in which beverage [40 trials; half alcohol, half
non-alcohol] [57, 58] and other appetitive images [40 trials] [57]
constituted infrequent “oddballs” presented amid more frequent
affectively neutral scenes (cf. [26, 48]). A separate visual “oddball” task
requiring mental rotation of stimulus images (cf., [11, 16]) was used to
elicit the Target-P3 response. Details regarding the two visual oddball
tasks and acquisition/processing of EEG data for these tasks are provided
in the article Supplement.
Representative ERP waveforms highlighting the Target-P3, ACR-P3, and

neutral images P3 are depicted in Fig. 1.

Procedure
Upon arrival, participants provided informed consent and then completed
the self-report questionnaires. Next, participants were moved to an EEG
recording suite and fitted with an electrode cap. After electrode placement
and testing, EEG was recorded while participants completed the two
oddball tasks in a counterbalanced order. Following task completion,
electrodes were removed, and participants were escorted to a private
restroom to wash off the electrode gel. Finally, participants were debriefed
about the study’s purpose, paid and thanked, and then dismissed. Each
session took ~2.5 h.

Data analyses
For the self-report measures, outlying values exceeding the median by
±2.5 interquartile ranges were winsorized to the highest non-outlying
value. Confirmatory factor analysis was used to define a latent PAI factor
reflecting variance shared among the four alcohol scale measures. Because
maximum drinks within the past 12 months and over the lifetime shared
method-specific variance, residual covariances between these two
indicators were specified a priori. Absolute model fit was evaluated based
on chi-square, RMSEA, and Standardized Root Mean Square Residual
(SRMR). Relative/incremental fit was evaluated based on the Comparative
Fit Index (CFI) and Tucker–Lewis Index (TLI).
Having evaluated this model, further structural equation models were

run in which the latent PAI factor was regressed onto both the Target-P3
from the rotated-heads oddball task and the ACR-P3 from the picture
viewing task, controlling for current (past month) drinking. Next, the
indirect effects of Target-P3 and ACR-P3 on PAI via ESI-Disinhibition were
evaluated, also controlling for current drinking levels. Following this, a
latent “general P3” factor was modeled using indicators consisting of
Oddball-Target-P3, Neutral-Nonbeverage-P3 (NNB-P3), and Nonalcohol-
Beverage-P3 (NAB-P3) to test the hypothesis that the ACR-P3 contains
two distinct components of variance—one of them shared with P3s
evoked by non-alcohol stimuli, and the other uniquely indicative of

1The YAACQ was added part-way into the study, and thus scores for
this measure were available for 103 rather than all participants.
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alcohol-cue incentive salience attribution. This hypothesis was tested by
regressing the ACR-P3 measure onto both the general P3 factor and the
latent PAI factor, with the prediction being that the ACR-P3 would relate
independently to each. All analyses included sex as a covariate. The
datasets generated and analyzed during the present study are available
on Open Science Framework: https://osf.io/9xjt2/.

RESULTS
Co-prediction, and mutual suppression, of Target-P3 and ACR-
P3 in relation to PAI
The individual alcohol involvement measures loaded strongly
onto the latent PAI variable (YAACQ total, λ= 1.00;2 past-year max
drinks, λ= 0.52; lifetime max drinks, λ= 0.54; ESI- Alcohol
Problems, λ= 0.67). A structural equation model (SEM) in which
this latent variable was regressed simultaneously onto the Target-
P3 and ACR-P3 variables—which covaried to a moderate positive
degree (bivariate r= 0.42)—along with current/recent drinking
and sex exhibited acceptable fit: CFI= 0.94, TLI= 0.90, χ2

(14)= 33.32 (p= 0.003), RMSEA= 0.09, SRMR= 0.07. Consistent
with our first hypothesis, this model revealed significant associa-
tions—in opposing directions—for both Target-P3 (β=−0.29,
p= 0.008) and ACR-P3 (β= 0.25, p= 0.009). Moreover, in line with
study hypothesis 2, mutual (“cooperative”) suppression was
observed: The beta coefficients for Target-P3 and ACR-P3 were
each weaker when entered as lone predictors of PAI (βs= 0.15
and −0.19 for ACR-P3 and Target-P3, respectively) than when
entered together as co-predictors (βs= 0.25 and −0.29, respec-
tively; see Fig. 2).

Distinct mediating role of trait disinhibition in the Target-
P3—PAI association
We then tested for indirect effects of Target-P3 and ACR-P3 on PAI
through ESI- Disinhibition. Consistent with hypothesis 3a, a
significant indirect effect was observed for Target-P3 on
PAI through ESI-Disinhibition (ab=−0.16, p= 0.019), such that
a smaller amplitude Target-P3 related to higher scores on the
ESI-Disinhibition scale (a=−0.25, p= 0.015), which in turn related

to greater PAI (β= 0.64, p < 0.001; see Fig. 3). However, in line with
hypothesis 3b, there was no evidence for an indirect effect of ACR-
P3 on PAI through ESI-Disinhibition (ab= 0.02, p= 0.74; see
Fig. 3).3

Demonstrating separate components of variance in the ACR-
P3
Next, an SEM was fit in which the ACR-P3 was regressed onto
two latent factors—one of them a general-P3 factor defined
using Target-P3, NNB-P3, and NAB-P3 as indicators, and the
other the PAI factor defined by the four drinking measures
(see Fig. 4)—exhibited good fit: CFI/TLI= 0.94/0.91, χ2

(25)= 53.87 (p < 0.001), RMSEA/SRMR= 0.09/0.09. Consistent
with hypothesis 4a, the three nonalcohol-related P3s each
loaded strongly onto the general-P3 factor of this model: λs for
Target-P3, NNB-P3, and NAB-P3= 0.54, 0.66, and 0.75, respec-
tively.4 Further consistent with prediction (hypothesis 4b), ACR-
P3 showed a robust positive association with the general P3
factor (β= 0.78, p < 0.001), and in addition (hypothesis 4c), a
significant positive association with the PAI factor (β= 0.15,
p= 0.035) attributable to unique variance unrelated to general-
P3 (see Fig. 3).

Fig. 1 Waveform plots for variants of the P3 brain response from the picture-viewing and rotated heads oddball tasks. The Target-P3
response is from a different task (i.e., rotated heads oddball task) than the Alcohol and Neutral picture P3s but is presented on the same
waveform plot axes to facilitate visual comparisons.

2A Heywood case emerged in this model, involving the loading of the
YAACQ total score onto the latent alcohol problems factor; thus, the
model was re-run fixing this loading to 1.0. Model fit statistics and
further modeling analyses utilized this revised model.

3In response to a helpful anonymous reviewer comment concerning
divergent validity, we also tested indirect pathways through alcohol
expectancies as assessed by the Comprehensive Effects of Alcohol
Questionnaire (Fromme, Stroot, & Kaplan, 1993). None of this
measure’s 7 subscales (Sociability, Tension Reduction, Liquid Courage,
Sexuality, Cognitive and Behavioral Impairment, Risk and Aggression,
Self-Perception) emerged as a significant mediator when used in place
of ESI-Disinhibition in the current model (all indirect effect p’s > 0.12).
For completeness, expectancy, and valuation scores were calculated
separately for each of the subscales and tested as mediators; again, no
significant indirect effects emerged in any of the 14 models for these
scores (all indirect effect p’s > 0.11).
4Magnitude of loadings and prediction of the ACR-P3 from the general
factor did not differ appreciably when including mean P3 response to
pleasant pictures [47] as a fourth indicator of the general P3 factor.
The λs for Target-P3, NNB-P3, NAB-P3, and Pleasant-P3 in this
alternative model were 0.51, 0.59, 0.86, and 0.74, respectively, and the
β for prediction of ACR-P3 from the four-indicator general P3 factor
was 0.72, p < 0.001.
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DISCUSSION
Drawing on prior findings establishing two variants of the P3 brain
response—Target-P3 and ACR-P3—as indicators of PAI, the
present work tested hypotheses arising from the idea that these
two P3s index distinct etiologic mechanisms for PAI. Specifically,
an extensive body of work indicates that reduced Target-P3
amplitude indexes a general proneness to disinhibitory psycho-
pathology (for reviews, see: [59]). In contrast, the amplitude of the
ACR-P3 is reliably enhanced in individuals at risk for or exhibiting
alcohol-related problems (e.g., [23–28, 48]). We posited that ACR-
P3 reflects a bottom-up affective process elicited specifically by
cues for alcohol-inexperienced drinkers, separate from the top-
down cognitive process indexed by Target-P3 that relates to
general externalizing proneness.

Opposing relations of Target-P3 and ACR-P3 with PAI
One hypothesis suggested by this two-process conceptualization
is that these two variants of P3 should exhibit separate
associations with PAI. This hypothesis was supported: when
included as concurrent predictors, each P3 variant showed
significant and opposing associations with scores on a PAI factor.
A further hypothesis was that Target-P3 and ACR-P3 would
correlate positively with one another—and that this shared
variance would operate to dampen (suppress) their distinctive
associations with PAI when examined alone. This hypothesis was
also supported: the opposing predictive relations for each P3
measure emerged more strongly in a model that included both as
predictors of PAI (thereby controlling for their shared variance)
than in separate models utilizing one or the other P3 measure as a
predictor. This evidence of mutual suppression between Target-P3
and ACR-P3 suggests that heterogeneity is present in each of
these predictors, that is, the overlapping variance between Target-
P3 and ACR-P3 diminishes their observed relations with PAI, such
that when this overlap is accounted for, their unique relationships
with PAI become magnified. This finding indicates that the
component of variance unique to each P3 indexes a distinct
neural process relevant to PAI [60].
Two additional hypotheses focused on examining the

constructed network of the two P3 variants. Specifically, we

tested whether the variance unique to Target-P3 indexes trait
disinhibition, whereas the variance unique to ACR-P3 indexes a
separate, PAI-specific process. Supporting the first of these
predictions, we found that a measure of trait disinhibition
accounted for a significant portion of the observed negative
correlation between Target-P3 and PAI. By contrast, no portion of
ACR-P3’s observed positive correlation with PAI was accounted for
by trait disinhibition.

Shared and distinct PAI-related processes indexed by Target-
P3 and ACR-P3
A final analysis was performed to test the hypothesis that ACR-P3
taps a separate PAI-specific process, by regressing ACR-P3 onto
two latent factors—one of them a general P3 factor defined by
Target-P3 along with P3s evoked by nonalcohol-related images,
and the other consisting of the PAI factor. This analysis revealed a
large positive association for ACR-P3 with the general P3 factor,
and separate from this, a small but significant positive association
with the PAI factor. This finding indicates that a unique
component of variance in ACR-P3, unrelated to variance shared
with the general P3 factor, was predictive of some process specific
to PAI.
A conceptual interpretation of findings for these two variants of

P3 can be advanced based on the broader psychophysiological
literature regarding factors contributing to P3 response in
different contexts. The P3 is highly ubiquitous, being elicited in
any paradigm that requires attention and stimulus discrimination
[61], but it is also highly context-dependent, in that its amplitude
is influenced by a variety of task parameters [62, 63]. In visual
cognitive performance contexts, P3 amplitude has been linked to
the engagement of evaluative categorization and/or decision-
making processes [50, 64–68]. In such contexts the stimuli
themselves are usually abstract (e.g., geometric figures or
alphanumeric symbols) and hold no inherent significance for
research participants; rather, their significance is determined by
task demands. By contrast, in picture-viewing tasks, affective visual
stimuli are inherently meaningful to participants apart from their
task relevance [69, 70]. The common process contributing to P3
amplitude in both types of paradigms is motivational significance

Fig. 2 Opposing associations for Target-P3 and ACR-P3 with problematic alcohol involvement. Target-P3= amplitude of P3 response to
target stimuli in the rotated heads oddball task. ACR-P3= amplitude of P3 response to alcoholic beverage images in the picture viewing task.
PAI problematic alcohol involvement latent factor; loadings of manifest indicators on the latent PAI factor are all significant at p < 0.01.
Coefficients for Target-P3, ACR-P3, and Current Alcohol Use are regression betas for these measures as concurrent predictors of PAI; sex was
included as a covariate in the model, but excluded in the figure for ease of visual presentation; *p < 0.05, **p < 0.01.
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[49, 71], theoretically reflecting phasic responding of the locus
coeruleus-norepinephrine system engaging with prefrontal and
limbic-associated structures (e.g., anterior insula; [72]) to signal the
need to change ongoing action plans [50, 73].
Beyond what they share, several factors distinguishing Target-

P3 and ACR-P3 likely contribute to their differential associations
with PAI. First, whereas Target-P3 reflects attribution of top-down
motivational significance to stimuli requiring a task-relevant
response, ACR-P3 reflects attribution of bottom-up motivational
significance to stimuli conditioned on alcohol-related reward. The
attribution of motivational significance (i.e., salience) is governed
by a so-called salience network comprised of anterior insula and
anterior cingulate cortices, which function to trigger a switch from
default mode to executive control networks when salient stimuli
or events are encountered [74–76]. From this perspective, the
covariation of Target-P3 amplitude with trait disinhibition likely
reflects blunted activation of executive control processes in
externalizing-prone individuals by stimuli requiring a top-down,
control-related response [42, 43, 59, 77].
To the extent that attributions of top-down versus bottom-up

motivational significance are dissociable, variants of P3 reflecting
these processes should differentially correlate with trait disinhibi-
tion. In support of this view, Patrick and Bernat [77] reported a
dissociation in the effects of externalizing proneness on P3
reactivity in a three-stimulus variant of the oddball task used here,
in which affective and neutral pictures were presented as rare
nontargets along with rare targets (heads) and frequent non-
targets (ovals). As is frequently observed [49], affective pictures
elicited an enhanced P3 response relative to all other stimuli. High
externalizing was associated with reduced P3 response to novel
picture stimuli as a set, and to target head stimuli as well, but the
degree of P3 amplitude enhancement for affective pictures
compared to neutral pictures was unrelated to externalizing. The
implication is that externalizing-prone individuals were deficient
in processing picture stimuli in terms of their relevance to the
instructed task (i.e., respond behaviorally or not), but not with
respect to their inherent motivational significance (see also [78]).
Another factor distinguishing Target-P3 from ACR-P3 is their

respective statuses as liability versus consequence indicators.
Considerable research points to reduced Target-P3 as a heritable

marker of liability for rather than exposure to substance use
problems. For example, Hicks et al. [20] reported that genes alone
(i.e., no significant role for environmental factors) accounted for
the association between Target-P3 amplitude and externalizing
problems in a large sample of adolescent twins, and Yancey et al.
[22] likewise reported a genetic basis for the ESI-DIS scale’s
association with Target-P3. In other work, Joyner et al. [21] used a
co-twin control design to demonstrate that Target-P3 amplitude
relates to substance use disorder symptoms as a function of
liability influences, rather than exposure history. In contrast, ACR-
P3 is believed to index individual differences in the incentive
salience of alcohol-related cues acquired through direct experi-
ences with alcohol use [29, 32, 33]. This is not to say, however, that
liability factors play no role in the acquisition of incentive salience
to alcohol cues. Indeed, there are important individual differences
in the tendency to attribute incentive salience to reward-
predictive cues, which likely have a heritable basis [31, 79].
Finally, whereas Target-P3 amplitude reduction indexes liability

for a broad spectrum of externalizing-related problems (of which
substance involvement comprises one of many expressions), ACR-
P3 is posited to reflect a substance use-specific risk factor. In
support of this idea, recent evidence points to a dissociation in the
P3 response to substance-related and other reward-related cues
[46, 48], indicating that ACR-P3 does not index general sensitivity
to reward.
Interestingly, however, Piasecki et al. [80] reported that low

sensitivity to alcohol’s subjective effects, a known correlate of
ACR-P3 [25–30], moderated P3 amplitude elicited by smoking cues
in a sample of smokers, suggesting that susceptibility to drug-cue
incentive salience attribution may generalize across drugs
of abuse.
Findings from the current study have important implications for

conceptualizing PAI-related neuropsychological processes and
biological indicators of those processes. In a recent theoretical
review, Perkins et al. [81] advanced an ontogenetic model for
understanding the role of neurobiological systems and processes
in psychopathology—one that considers the dynamic progression
from genotypic propensity (latent liability) to phenotypic expres-
sion (manifest symptomatology) across time and periods of
development [82–85]. From the viewpoint of this model, neural

Fig. 3 Indirect effects of P3 variants (Target, ACR) on PAI through trait disinhibition. Target-P3= amplitude of P3 to target stimuli in the
rotated heads oddball task. ACR-P3= amplitude of P3 to alcoholic beverage images in the picture viewing task. PAI = problematic alcohol
involvement latent factor; PAI’s manifest indicators are the same as in Fig. 2 but are not depicted to simplify the presentation; sex was also
included as covariate predicting PAI but also was not depicted to simply presentation. ESI-Disinhibition = trait disinhibition scale of the
externalizing spectrum inventory. Path coefficients for Target-P3 and ACR-P3 as predictors of PAI are derived from models in which the total
effect for each predictor was partitioned into direct and indirect effects, with the latter reflecting the predictor’s relationship with PAI as a
function of its shared association with ESI-Disinhibition. *p < 0.05. **p < 0.01.
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and other biological measures can be informative in different
ways—as indicators of broad risk (e.g., for impulse control
disorders, or phobic-fear disorders), of antecedents to clinical
symptomatology (e.g., neural sensitization to reward or punish-
ment cues), of features of active psychopathology (e.g., tolerance
or withdrawal symptoms of substance addiction), or of conse-
quences of psychopathology (e.g., alterations in functioning that
persist after cessation of heavy drinking or other drug use). The
two P3 variants examined here exemplify these nuanced
etiological processes: Target-P3 operates as an indicator of broad
disinhibitory liability, which in turn confers risk for various types of
externalizing disorders [22], whereas ACR-P3 is much more closely
tied to the clinical expression of symptomatology in problematic
alcohol use.

Limitations and future directions
Despite its many strengths, the current work contained weak-
nesses that should be addressed in future research. First, while a
community sample has advantages in terms of broad applicability
and potential generalizability of results, it provides limited
representation of the most severe expressions of problematic
alcohol use, particularly in terms of physical dependence features
such as active withdrawal symptoms and AUD treatment-seeking
(which served as exclusion criteria in the current work). Follow-up
research is needed to test the reported effects in clinical samples
and to examine how alcohol- and nonalcohol-related P3s might

change as a function of treatment and recovery. Similarly, the
cross-sectional design of the current work precluded characteriz-
ing the degree to which associations between Target-P3 and ACR-
P3 might change as consumption increases. Presumably,
increased consumption would not change any overlap in their
heritability but would contribute uniquely to variability in ACR-P3,
resulting in a decrease in their covariation overall. Future work
using longitudinal designs is needed to examine this possibility.
Conversely, refinement of ERP tasks that make alcohol images
more “target-” or “oddball-like” would likely increase the propor-
tion of variance in the ACR-P3 related to general externalizing
proneness, and correspondingly reduce the proportion related to
alcohol-cue incentive salience attribution. Thus, different versions
of tasks should be developed to best capture distinct variance
components of interest for particular investigative purposes.
Lastly, it will be important in future research to extend current
study findings to other substance classes. Specifically, current
results suggest that P3 responses to cannabis-, cocaine-, or opioid-
related images should contain variance unique to each proble-
matic substance class, separate from the more general P3 that
relates to these outcomes via general externalizing proneness.

CONCLUSION
Notwithstanding these limitations, the present work provides
important new evidence for heterogeneity in P3 brain response to

Fig. 4 Model demonstrating a unique association for ACR-P3 with PAI, distinct from its association with a general P3 factor. Target-
P3= amplitude of P3 to targets in the rotated heads oddball task. ACR-P3, NNB-P3, and NAB-P3= amplitude of P3 to alcoholic beverage
images, neutral non-beverage, and nonalcoholic beverage images in the picture-viewing task, respectively. General P3 and PAI = latent factors
reflecting variance shared among P3s to nonalcohol images of different types, and among different indicators of problematic alcohol
involvement, respectively; loadings of manifest indicators on each latent factor are all significant at p < 0.01. Coefficients for General P3 and
PAI are regression betas for these latent factors as concurrent predictors of ACR-P3; sex was included as a covariate in the model, but excluded
in the figure for ease of visual presentation; *p < 0.05, **p < 0.01.
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different types of stimuli in relation to PAI. Our findings
support a two-process theory of substance addiction involving
concurrent elements of weak general top-down control and
strong specific bottom-up incentive salience attribution to drug-
related cues.
Current results also serve to illustrate how multiple distinct

sources of variance can exist within a single brain response
measure [86], and they highlight the importance of an ontoge-
netic process-based understanding of how psychophysiological
measures relate to clinical problems and affiliated traits [81].
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