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Abstract

Multiple theoretical perspectives posit that drug use leads to biased valuation of

drug-related reward, at the expense of naturally occurring rewarding activities

(i.e., reward dysregulation). Recent research suggests that the comparative balance of

drug-related and nondrug-related reward valuation is a powerful determinant of

substance misuse and addiction. We examined differential neurophysiological

responses—indexed with the P3 component of the event-related potential (ERP)—

elicited by visual alcohol cues and cues depicting natural reward as a neurobiological

indicator of problematic drinking. Nondependent, young adult drinkers (N = 143,

aged 18–30 years) completed questionnaire measures assessing alcohol use and

problems, and viewed alcohol cues (pictures of alcoholic beverages), high-arousing

natural reward cues (erotica, adventure scenes), nonalcoholic beverage cues, and

neutral scenes (e.g., household items) while ERPs were recorded. When examined

separately, associations of P3-ERP reactivity to alcohol cues and natural reward cues

with alcohol use and problems were weak. However, differential P3 response to the

two types of cues (i.e., reward dysregulation P3) showed consistent and robust associ-

ations with all indices of alcohol use and problems and differentiated high-risk from

lower-risk drinkers. The current results support the idea that the differential

incentive-motivational value of alcohol, relative to naturally rewarding activities, is

associated with increased risk for substance misuse and dependence, and highlight a

novel neurophysiological indicator—the reward dysregulation P3—of this differential

reward valuation.
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1 | INTRODUCTION

Humans evolved to experience reward from activities that promote

their survival (see Lende and Smith1). For example, eating,2

exercising,3 social interaction,4 and sexual intimacy5 are all known

to stimulate the neurocircuitry of reward and reinforcement learn-

ing, thereby motivating their repetition.6 Drugs of abuse also

engage neural reward systems,7 thus reinforcing efforts to obtain

and consume them. Multiple theories posit that repeated use of

drugs can alter the neurocircuitry of reward processing in ways
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that bias attention and motivational systems towards drug

pursuit,7,8 at the expense of other, naturally rewarding

activities.9,10

Consistent with these perspectives, alcohol use disorder (AUD)

has been characterized as a disorder of reinforcement pathology.11

Three theoretical perspectives—the incentive-sensitization theory,12

reward deficit models,13,14 and behavioural economic theory15—make

complementary predictions in this regard. Yet, researchers have

largely failed to integrate these theoretical perspectives in empirical

work investigating neurobiological indicators of AUD risk. Here, we

investigated whether differential neural reactivity to alcohol cues ver-

sus cues depicting nondrug rewards—an index of individual differ-

ences in reward dysregulation (i.e., drug overvaluation)—is associated

with young adults' alcohol use and problems.

2 | INCENTIVE-MOTIVATIONAL AND
REWARD DEFICIT MODELS OF ADDICTION

The incentive-sensitization theory of addiction7,12 posits that, in vul-

nerable individuals, contextual cues signalling drug availability take on

the incentive value of the drugs themselves, transforming cues into

“motivational magnets”16 that capture attention, elicit craving and

approach, and compel consumption. In preclinical models, the expres-

sion of aberrant incentive salience to drug-related cues is evident

when, following conditioning of cues with drug delivery, animals

approach and even attempt to consume those cues.17 In humans,

incentive salience sensitization of drug-related cues can be observed

in the magnitude of users' cue reactivity.18,19 Among heavy drinkers

and individuals with AUD, alcohol cues capture attention,20,21 pro-

mote appetitive approach behaviours,22,23 elicit exaggerated neuro-

physiological responses,24,25 and trigger craving.19,26

Whereas the incentive-sensitization theory emphasizes the aber-

rant incentive-motivational value of alcohol-related cues in AUD

aetiology,27 reward-deficit models posit that risk for drug abuse is

conferred by blunted motivational significance of natural

(i.e., nondrug) reinforcers. The allostatic model of addiction13 posits

that, with repeated drug use, neural reward pathways become sensi-

tized to drug reward, such that incentive-motivational value of non-

drug rewards is attenuated.28 In contrast, the reward deficiency

hypothesis14,29,30 posits that blunted sensitivity to nondrug-related

rewards represents a premorbid liability factor for substance misuse

(i.e., reward deficiency syndrome14,30), prompting affected individuals

to seek activities, such as drug use, that stimulate the reward sys-

tem.31

In support of these perspectives, various addicted populations

demonstrate reduced activation in key reward processing regions,

such as the medial prefrontal cortex,32 orbitofrontal cortex,10 and the

ventral striatum,33,34 when viewing nondrug rewards.35 Heavy drug

and alcohol users also demonstrate blunted neurophysiological

responses to highly arousing pleasurable cues (e.g., erotic scenes;

food)36 and reward-related feedback,37,38 and lesser inhibition of

startle-probe reactivity during viewing of natural reinforcers.39

3 | DIFFERENTIAL VALUATION OF DRUG
AND NONDRUG REINFORCERS: REWARD
DYSREGULATION

Whereas the incentive-sensitization and reward-deficit models

emphasize the importance of drug-related and nondrug-related rein-

forcement, respectively, in the aetiology of addiction, neither of these

perspectives directly addresses whether the differential valuation of

these forms of reward might signify risk for substance abuse. How-

ever, behavioural theories of choice,11,40 value-based decision-making

models,41,42 and computational neuroscience-based models of relative

reward value43 suggest that the relative difference between

substance-related versus substance-free reward is critical to addiction

aetiology. For example, recent studies using demand metrics and con-

current choice tasks in humans44,45 and rodents46,47 demonstrate that

greater valuation of drugs over substance-free reward is strongly

associated with addiction.48–50 However, no study has tested whether

the extent of differential valuation of drug cues versus naturally occur-

ring rewards—as indexed by neurophysiological measures of

incentive-motivational value—is a marker of risk for substance abuse

and dependence.

Results from previous electrophysiological studies are sugges-

tive in this regard.36,51,52 For example, Dunning et al.52 demon-

strated that individuals with cocaine use disorder show enhanced

event-related potential (ERP) reactivity to cocaine-related cues but

blunted reactivity to nondrug-related pleasant cues. Parvaz et al.51

showed that this profile can be reversed with abstinence. Further-

more, recent work by Versace et al.53 showed that, compared to

smokers who demonstrated relatively high ERP reactivity to both

smoking-related cues and to nondrug-related pleasant images,

smokers who demonstrated low ERP reactivity to nondrug-related

pleasant images but high reactivity to smoking-related cues were

more likely to relapse after a quit attempt. Yet, none of these prior

studies has quantified the difference in neurophysiological responses

to drug cues versus naturally occurring rewards as an indicator of

substance abuse and dependence.

4 | THE CURRENT STUDY

Prior research has demonstrated the utility of enhanced neural reac-

tivity to substance-related and blunted reactivity to natural reward

cues for understanding addiction pathology in cocaine users51,52 and

smokers attempting to quit.36 In addition, behavioural economics

work has shown that greater self-reported valuation of alcohol over

substance-free rewarding activities is associated with problematic

alcohol use in young adult drinkers.50 Here, we examined whether the

extent of differential neurophysiological reactivity to alcohol-related

versus natural reward cues (i.e., reward dysregulation) is associated

with alcohol use and problems in young adults with no history of

AUD-like symptoms. Reward dysregulation was quantified as the dif-

ference in amplitude of the P3 ERP elicited by alcohol-related versus

natural reward cues. The P3 (or P300) is known to increase in
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amplitude in relation to the motivational significance or incentive

value of eliciting stimuli,54–56 and enhanced amplitude of the P3

elicited by alcohol cues (ACR-P3) has been shown to predict alcohol

use and heavy drinking.57 In contrast, blunted amplitude of the P3

elicited by natural, nondrug reward cues (Reward-P3) has been dem-

onstrated in AUD58 and persistent users of nicotine36 and cocaine.59

Following from this work, we hypothesized that the amplitude of

the ACR-P3 would be positively associated with alcohol use and prob-

lems (H1) and that the amplitude of the Reward-P3 component would

be negatively associated with alcohol use and problems (H2). Most

critically, we posited that the difference in the ACR-P3 relative to the

Reward-P3 (i.e., reward dysregulation P3) would be more strongly asso-

ciated with alcohol use and problems (H3i) and, therefore, would bet-

ter differentiate problem from nonproblem drinkers than either of its

constituent components (H3ii).

5 | METHODS

5.1 | Participants

Participants were 156 young adults (ages 18–30 years) recruited from

a large, public university and surrounding community via flyers and

informational emails. Study candidates were prescreened using a

questionnaire; individuals were excluded if they reported any

attempts to quit drinking, history of alcohol withdrawal symptoms, or

history of head trauma or other neurological disorder. The current

report includes data from 143 individuals (see online Supplementary

Materials for exclusions), the majority of whom were female (61%),

White (88%), university students (79.7%), and relatively young (Mage

= 21.9, SD = 2.97 years) (see Table S1 for more details). Participants

were compensated at $10/h. The University of Missouri's Institutional

Review Board approved the study's materials, protocol, and

procedures.

5.2 | Measures and materials

5.2.1 | Alcohol use and problems

Participants reported on their typical alcohol use, frequency of binge

drinking, and the largest number of drinks in a 24-h period over the

past year (max drinks) using items recommended by the NIAAA Task

Force.60 A subset of participants (N = 103; 66%) also reported past-

year negative alcohol-related consequences using the Young Adult

Alcohol Consequences Questionnaire (YAACQ61,62).1 Details on these

measures are in the online supplementary materials; Table S2 provides

descriptive data from these measures.

To address a secondary goal of the study (testing the problem-

drinking classification performance of ACR-P3 and Reward-P3), the

subset of participants who completed the YAACQ were categorized

as either low/moderate risk (YAACQ score ≤ 15; n = 77) or high risk

(YAACQ total score ≥ 16; n=26) for alcohol problems, applying cut-

scores suggested by Read et al.63

5.3 | Picture-viewing task

The ACR-P3 and Reward-P3 were elicited in the context of a picture-

viewing ‘oddball’ task64,65 (see Figure 1). Participants viewed infre-

quent (4% each) pictures of alcoholic beverages (e.g., beer), non-

alcoholic beverages (e.g., milk), adventure scenes (e.g., people

skydiving), and erotic scenes (e.g., partial nudity) amid more frequently

presented (84%) neutral pictures (e.g., a bus). Images were presented

against a black background one at a time in sequences of five, at least

four of which were from the neutral category. A total of 100, five-trial

sequences (500 total viewed images) were presented, such that par-

ticipants viewed each type of target image 20 times. To prevent the

influence of participants' expectations and anticipatory neural

responses, and to ensure that at least three neutral images occurred

F IGURE 1 (A) Example of a trial sequence from the picture-viewing ‘oddball’ task, in which more frequent neutral images form a context in
which the ‘target’/oddball image (e.g., a picture of beer) appears in the fourth position. (B) Exemplars of the oddball stimuli used in the current
study: erotic scenes, adventurous scenes, Alcoholic beverages, and Nonalcoholic beverages

MARTINS ET AL. 3 of 13
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between any two presentations of images from target categories, tar-

get images appeared in the fourth or fifth position in the trial

sequence and some of the trial sequences consisted exclusively of

neutral pictures. Participants categorized each image as “neutral” or

“pleasant” by pressing one of two buttons; response mapping was

counter-balanced across participants. Images were presented for

1000 ms, followed by a 900- to 1200-ms interstimulus interval that

varied randomly. Trial sequences were separated by a 500-ms inter-

trial interval during which the word “pause” appeared on the screen.

Images were selected either from the Normative Appetitive Picture

System (NAPS,66,67 or the International Affective Picture System

(IAPS,68; see Supporting Information for details).

5.4 | Neurophysiological recording and data
processing

The electroencephalogram (EEG) was recorded from 27 Ag/AgCl elec-

trodes fixed in a spandex cap (Electro-Cap International, Eaton, OH)

and positioned according the 10–20 system.69 EEG was digitized at

1000 Hz and band-pass-filtered online at 0.01–0.40 Hz. Scalp elec-

trodes were referenced online to the right mastoid; an average mas-

toid reference was derived offline. Ocular artefacts (e.g., blinks) were

recorded with additional electrodes placed 1 in below and above the

left eye and 1 cm lateral to the outer canthi of the eyes, and were

removed from the EEG using a regression-based algorithm (see

Gratton et al.70). Electrode impedances were kept below 10 kΩ.

Stimulus-locked epochs of 1300 ms (200-ms baseline) were extracted

and then baseline-corrected before rejecting artefact-contaminated

trials with voltage ±75 μV; the average number of rejected trials per

subject for those subjects included in the subsequent analyses was

M = 3.72 for alcoholic beverages; M = 3.52 for adventure scenes;

and M = 3.19 for erotic scenes. Accepted trials ranged from 5 to

20 for alcoholic beverages and adventure scenes and 6 to 20 for

erotic scenes.

5.4.1 | P3 quantification

Figure 2 presents grand-average waveforms for each picture type;

Figure 3 presents grand-average waveforms elicited by alcohol and

nonalcohol reward pictures separately for the two problem-drinking

risk groups; and Figure 4 presents topographic distribution of the

P3 measures. Consistent with previous reports using a similar

picture-viewing task,57,65 P3 amplitude was largest at posterior and

occipital electrode sites, especially Pz, and peaked 400–600 ms fol-

lowing image onset. Thus, P3 amplitudes were quantified as the

mean voltage 400–600 ms post-stimulus at P3, Pz, P4, P7, P8, O1,

and O2, averaged across trials for each image category separately.

ACR-P3 was quantified as the mean P3 amplitude elicited by alco-

hol cues; the Reward-P3 was computed as the average of the

standardized (z-scored) mean P3 amplitudes elicited by erotic and

adventurous scenes. As an appetitive control condition, we also

F IGURE 2 (A) Grand-averaged, stimulus-locked ERP waveforms
recorded at channel Pz as a function of image type. (B) Difference
waveform (ACR-P3 minus Reward-P3) recorded at channel
Pz. Shading represents the time window (400–600 ms post-stimulus)
used for P3 mean amplitude quantification

F IGURE 3 Grand-averaged ERP waveforms elicited by alcohol
and nonalcohol reward images (recorded at channel Pz), separately for
individuals at Low/Moderate Risk (YAACQ score ≤15) and High Risk
(YAACQ score ≥ 16) for harmful and hazardous drinking. Shading
represents the time window (400–600 ms post-stimulus) used for P3
mean amplitude quantification
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computed the P3 elicited by nonalcoholic beverage images

(Nonalc-P3). Both ACR-P3 and Reward-P3 showed adequate

Spearman-Brown corrected split-half reliability (rs = 0.73 and 0.86,

respectively), whereas the Nonalcohol-P3 showed lower reliability

(r = 0.62). As is common with many ERP difference scores,71,72 the

reward dysregulation P3 (ACR-P3 minus Reward-P3) demonstrated

lower reliability (r = 0.54), which nevertheless was comparable to

estimates of reliability reported for other reward sensitivity neural

difference score measures.37,73,742

5.5 | Procedure

Upon providing informed consent, participants completed question-

naires assessing alcohol use and problems, and then were fitted with

an electrode cap. Participants completed the picture-viewing task,

after which they were shown to a private restroom to clean electrode

gel from their face and hair. Finally, participants were debriefed,

thanked for their participation, and dismissed.

5.6 | Data analytic approach

Participant exclusions: Two participants withdrew before EEG data

collection was completed. Data from four other participants were

not properly acquired due to experimenter error (n = 2) or

equipment malfunction (n = 2), and data from seven additional

participants were excluded because their EEG contained excessive

artefact (<25% valid trials).3 The final sample included

143 participants.

5.6.1 | Regression analyses

To determine the extent to which the ACR-P3, Reward-P3, their dif-

ference (reward dysregulation P3), and the appetitive control condi-

tion (ACR-P3 minus Nonalc-P3) were associated with typical alcohol

use, frequency of binge drinking, and heavy episodic drinking, a

series of ordinary least squares (OLS) multivariate linear regression

models were estimated using the R statistical package.75 Distribu-

tional properties indicated that the distribution of these outcomes

did not deviate dramatically from normality (all skew <2.0 and kur-

tosis <7.0). Separate regression models—accounting in each case for

the effects of age, gender (0 = females; 1 = males), and race

(0 = Non-White; 1 = White)—were used to examine associations for

the three P3 response variables with each drinking outcome mea-

sure. For each drinking outcome measure, two of the regression

models included either ACR-P3 or Reward-P3 as the ERP predictor,

a third model included both ACR-P3 and Reward-P3 as ERP predic-

tors, the fourth model included the reward dysregulation P3 as the

ERP predictor, and a final model included the appetitive control P3

as the ERP predictor. In addition, a series of negative binomial

multivariate (NB) regression models4 were estimated in R75 using

the MASS package78 to determine the extent to which each P3

response measure was associated with alcohol problems. Each NB

regression model separately examined the association between each

P3 response measure and alcohol problems, while accounting for

the effects of age, gender, race, and a composite alcohol use/heavy

drinking measure created by averaging responses to the typical

alcohol use, binge drinking, and max drinks measures (mean r

value = 0.70; range = 0.65 to 0.77). All models indicated low

multicollinearity (all VIFs <2).

F IGURE 4 Topographic distribution of mean P3 amplitude 400–600 ms post-stimulus as a function of image type

MARTINS ET AL. 5 of 13
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5.6.2 | ROC curves

Another goal of this work was to investigate the classification perfor-

mance of each P3 response measure for identifying individuals at risk

for harmful or hazardous drinking. Comparing the classification perfor-

mance of the neural response measures to that of a more common

self-report measure (e.g., alcohol use) provides validity information for

the clinical utility of the neural measures. To address this goal, we

estimated a series of receiver operating characteristic (ROC) curves in

R75 using the pROC package79 quantifying how well each P3 measure

classifies participants as low/moderate risk versus high risk for alcohol

problems based on their YAACQ scores. The area under the curve

(AUC) is used to quantify the classification precision and utility of a

classifier. Values of AUC can vary between 0 and 1, where AUC = 0.5

indicates random classification performance. Higher AUC values indi-

cate better classification accuracy and diagnostic performance.

6 | RESULTS

6.1 | Associating P3 responses with alcohol use
and problems: Regression analyses

Table S3 summarizes bivariate correlations between ACR-P3,

Reward-P3 and their difference score variable (reward dysregulation

P3) with all drinking-related outcomes. Results from the five OLS

regression models associating all P3 measures with drinking-related

outcomes are summarized in Table 1. Although the ACR-P3 and

Reward-P3 were positively correlated (r = 0.59, p < 0.001), when

tested individually as predictors of alcohol outcomes (Models 1 and 2)

they showed small and largely nonsignificant associations with those

outcomes. When included together as predictors (Model 3), their rela-

tions with alcohol outcomes became stronger in all cases—and in

opposing directions—and statistically significant in some. More impor-

tantly, the reward dysregulation P3 (Model 4) showed robust and con-

sistent associations with all alcohol outcome measures, consistently

accounting for a higher proportion of variance than either of its con-

stituent P3 measures or the appetitive control P3 difference score

(Model 5).

6.2 | Classification of problem drinking risk: ROC
curve analyses

ROC curves (Figure 5) showed that classification performance for

each ERP measure alone was no better than chance. For ACR-P3,

AUC = 0.61 (SE = 0.07, 95% CI = 0.48–0.74), positive predictive

value (PPV) = 0.38, and negative predictive value (NPV) = 0.82. For

Reward-P3, AUC = 0.62 (SE = 0.06, 95% CI = 0.50–0.74),

PPV = 0.35 and NPV = 0.86. However, reward dysregulation P3 suc-

cessfully differentiated high-risk from low/moderate-risk drinkers

(AUC = 0.72, SE = 0.05, 95% CI = 0.61–0.83), PPV = 0.40 and

NPV = 0.93, and did so nearly as well as a composite alcohol

use/heavy drinking measure (AUC = 0.85; SE = 0.05, 95% CI = 0.76–

0.94), PPV = 0.55 and NPV = 0.92. Indeed, the reward dysregulation

P3 and alcohol use/heavy drinking composite variable were similar in

their classification performance: AUCs = 0.72 versus 0.85;

D = �1.98, p = 0.05. However, the AUC for the reward dysregulation

P3 did not differ statistically from the AUCs for both ACR-P3

(AUCs = 0.72 vs. 0.61; D = 1.65, p = 0.098) and Reward-P3

(AUCs = 0.72 vs. 0.62; D = 1.61, p = 0.107), suggesting that the

incremental classification precision of the reward dysregulation P3

over its constituents is essential for achieving a classification accuracy

and diagnostic performance better than random guessing.

7 | DISCUSSION

Conceptualizing addiction as a brain disease80 has led researchers to

search for neurobiological indicators of addiction vulnerability.81 The

current study examined reward dysregulation P3—a neurophysiologi-

cal response representing the differential incentive value of alcohol

vs. natural reinforcers—as a potential neurobiological indicator of risky

drinking and adverse consequences. The notion that differential valua-

tion of drug versus nondrug reward is an indicator of addiction risk is

congruent with multiple theoretical perspectives12–14,82 and with

recent neuroimaging research showing that addiction is characterized

by enhanced responses to drugs cues, coupled with blunted responses

to cues representing natural reinforcers (e.g., previous works9,10,51,52).

In line with our hypotheses, ACR-P3 was positively associated

with binge drinking and alcohol problems (H1), the latter indepen-

dently of alcohol use, and Reward-P3 was (modestly) negatively asso-

ciated with heavy drinking (H2). More importantly, attesting to its

potential as a neurobiological indicator of problematic drinking,

reward dysregulation P3 showed robust and consistent associations

with alcohol-related outcomes, accounting for a greater proportion of

variance in those outcomes than its constituent responses (H3i). Fur-

thermore, reward dysregulation P3 showed better utility in discrimi-

nating at-risk from lower-risk individuals than did ACR-P3 or Reward-

P3 alone (H3ii)—and did so essentially as well as an alcohol use/heavy

drinking composite measure, the “gold standard” indicator of risk for

alcohol-related problems.83 These findings are consistent with recent

studies demonstrating that a neurophysiological response profile

involving low reactivity to nondrug-related, natural reward images and

high reactivity to drug-related cues is associated (positively) with risk

for relapse among smokers36,53 and (negatively) with abstinence in

cocaine use disorder.51,52 The current findings extend prior reports by

demonstrating that differential incentive valuation of cues for drug

and nondrug reward is associated with heavier, more problematic use

of alcohol—a substance far more commonly used than either nicotine

or cocaine84—and is evident in a nonclinical young adult sample. Thus,

the current results highlight that the reward dysregulation phenome-

non is evident even among a nonaddicted, more typical substance-

using population, and suggest that the reward dysregulation profile

could be a premorbid liability for addiction rather than a consequence

of neuroadaptations resulting from it.
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The current findings have implications for understanding the

utility of neurophysiological indicators of addiction risk. Although

ACR-P3 and Reward-P3 were moderately positively correlated

(r = 0.59, p < 0.001), the regression model including both as simul-

taneous predictors showed that both were independently

associated—but in opposite directions—with alcohol use and heavy

drinking. These findings underscore the importance of accounting

for multiple sources of variance in reward-related processing when

interpreting neurophysiological responses to drug-related stimuli53;

such responses share variance with a general responsivity to

reward, but their unique utility for elucidating substance use and

related phenomena depends on parsing that shared variance,

thereby allowing nonshared variance to contribute uniquely to vari-

ance in substance use-related outcomes.

Additionally, both ACR-P3 and reward dysregulation P3

accounted for unique variance in alcohol-related problems beyond

that associated with alcohol use. This finding suggests that neuro-

physiological measures can provide incremental utility for clinical diag-

nosis and vulnerability assessment, beyond that provided by self-

report measures of behaviour.85–87 This finding also suggests that

although the incentive salience of both drug-related and natural

reward cues can be affected by substance involvement,13,88 substance

use does not wholly determine neural indicators of the incentive

salience construct or fully mediate their associations with criterion

measures. This suggests the possibility that a tendency to attribute

aberrant incentive salience to drug-related versus natural reinforcers

might antedate heavy substance use, perhaps reflecting a (possibly

heritable) neurobiological vulnerability.89,90

This possibility is directly posited by the reward deficiency

hypothesis,14 which holds that a genetically determined deficiency in

dopamine DRD2 receptor availability30,91 causes blunted neural

reward system responding to natural rewards. This deficient reward

response is thought to predispose affected individuals to seek out

drugs of abuse. Alternatively, the allostasis model13 holds that persis-

tent, heavy substance use causes neuroadaptations that alter the bal-

ance of responding by reward neurocircuits, such that those circuits

become hypoactive in the absence of drugs and hyperactive to drugs

and drug-related cues.8 Thus, both models posit blunted responding

to natural reward as key to understanding the attribution of incentive

salience to drug-related cues,36,53 but they differ in ascribing a causal

role for this blunted responding to persistent drug use (allostasis) ver-

sus premorbid dopamine DRD2 receptor availability (reward defi-

ciency). Given the relative youth of the current sample and their

nonclinical status, and the finding that reward dysregulation P3 ampli-

tude accounted for incremental variance in alcohol-related problems

(beyond that associated with heavy drinking), it seems likely that at

least part of the reward dysregulation P3 phenotype reflects

premorbid vulnerability rather than neuroadaptations resulting from

heavy alcohol use. It is important to underscore, however, that the

design of the current study does not permit direct inferences regard-

ing the aetiology of the reward dysregulation P3 response.

Future work should seek to clarify the ontogeny of the reward

dysregulation P3 phenotype using longitudinal and/or genetically

informed designs (i.e., twin studies). Indirect evidence has been pro-

vided by several lines of work. For example, reduced dopamine D2

receptor availability is associated with cue-elicited, dopamine-

F IGURE 5 Receiver operating characteristic
(ROC) curves summarizing classification precision
of P3 response measures and a composite alcohol
use/heavy drinking measure in discriminating
individuals at risk for harmful and hazardous
drinking. ACR-P3 = P3 amplitude elicited by
alcohol-related cues; Reward-P3 = P3 amplitude
elicited by natural reward cues; Reward
dysregulation P3 = differential P3 reactivity to

alcohol and natural reward cues. Alcohol use/
heavy drinking = composite created by averaging
scores from typical alcohol use, binge drinking
and heavy episodic drinking measures.
AUC = area under the curve; the diagonal line
denotes an AUC value of 0.5, which indicates
random classification performance
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mediated activation of brain reward regions,92 cue-elicited

craving,92,93 and AUD severity.94 Preclinical research offers comple-

mentary evidence in that dopamine D2 receptor knock-out rats show

increased incentive motivation for drugs,95,96 and reduced dopamine

D2 receptor availability modulates alcohol preference97 and is present

in rats who attribute incentive value to reward-predictive cues

(i.e., expressing the sign-tracking phenotype; see Flagel et al.98 and

Tournier et al.99).

In addition to the inability to resolve the aetiology of the reward

dysregulation P3 response, the current study's design was limited in

other ways. First, although P3 amplitude is a clear indicator of the

incentive-motivational significance of eliciting stimuli,54,56 its neural

generators are diffuse100 and modality-dependent,101 and although

some work is suggestive of such a link,102 the extent to which P3

amplitude reflects engagement of reward neurocircuitry is not clear.

Future research using combined ERP and fMRI paradigms102 can help

to resolve whether the Reward-P3 and ACR-P3 share neural sources

in the reward processing circuits known to underlie reward deficiency

and/or incentive salience attribution. Second, the sample was homog-

enous in terms of demographic characteristics, and the picture stimuli

used to evoke reward-relevant brain responses were limited in num-

ber and content. Future work should examine reward dysregulation

P3 and its relation to drinking outcomes in more diverse populations

and should expand the types of reward-relevant cues (e.g., food,

money, and social intimacy) used to elicit its constituent P3 responses.

It also is not clear whether the current findings would generalize to

older or alcohol-addicted populations. Finally, future work should seek

to evaluate the specificity versus generality of these effects—in partic-

ular, whether reward dysregulation P3 indexes risk for alcohol use and

problems specifically or is associated with broader, transdiagnostic

traits (e.g., externalizing proneness37) that also increase risk for alcohol

problems.

In conclusion, the current results provide the first evidence that

differential valuation of alcohol versus natural rewards (i.e., reward

dysregulation) is associated with increased risk for alcohol misuse and

problems in a nonclinical sample of drinkers. Findings also underscore

the added clinical utility of neurophysiological measures for classifying

risk, beyond self-report measures of behaviour. Given evidence that

dysregulated response to drug versus natural reinforcers can be

reversed,103 the current results can contribute to development of

intervention efforts aimed at reducing the burden of alcohol misuse

and its adverse consequences.
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ENDNOTES
1 The YAACQ was added to the questionnaire battery after data collection

had started.
2 In many situations, a regression residual approach is preferred over a dif-

ference score approach when using ERPs as individual difference mea-

sures.71 We essentially adopted both approaches here. Our regression

models that include both P3 predictors simultaneously are functionally

equivalent to the residual score approach. Also, the most important met-

ric for evaluating a difference score is not its reliability per se, but the

extent to which it relates to a theoretically relevant criterion.74 As our

models show, the reward dysregulation P3 is more strongly associated

with alcohol problems than either of its constituent P3 responses,

supporting its validity as a reliable individual difference measure.
3 Only five participants were at or near this 25% threshold in any image

categories; no participant had only 25% valid trials in multiple image

categories.
4 Overdispersion in the observed distribution of nonnegative count vari-

ables is commonly observed in substance use data.76,77 NB models were

found to be more adequate and statistically superior to alternative

regression models typically used for modeling count data, including

Poisson, zero-inflated Poisson (ZIP), zero-inflated negative binomial

(ZINB), Poisson Hurdle (PH), and negative binomial Hurdle (NBH)

models.
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