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Abstract

Rationale Alcohol intoxication can dampen negative affective reactions to stressors. Recently, it has been proposed that these
acute anxiolytic effects of alcohol may extend to dampening of negative affective reactions to error commission during cognitive
control tasks. Nonetheless, empirical verification of this claim is lacking.

Objectives Test the acute effect of alcohol on negative affective reactions to errors during an effort-demanding cognitive control
task.

Methods Healthy, young adult social drinkers (V=96 [49 women], 21-36 years old) were randomly assigned to consume
alcohol (0.80 g/kg; n=33 [15 female]), active placebo (0.04 g/kg; n=33 [18 women]), or a non-alcoholic control beverage
(n=30 [16 women]) before completing the Eriksen flanker task. Corrugator supercilii (Corr) activation, a psychophysiological
index of negative affect, was tracked across the task. Two neurophysiological reactions to errors, the error-related negativity
(ERN) and the error positivity (Pe), were also measured.

Results Erroneous actions increased Corr activation in the control and (to a lesser extent) placebo groups, but not in the alcohol
group. Error-induced Corr activation was coupled to ERN and Pe in the control, but not in the alcohol and placebo groups. Error-
induced Corr activation was not coupled to post-error performance adjustments in any group.

Conclusions The ability of alcohol to dampen error-related negative affect was verified. It was also shown that placebo alone can
disrupt coupling of affective and (neuro)cognitive reactions to errors. Although its behavioral relevance remains to be demon-
strated, more attention should be paid to the role of affect in action monitoring and cognitive control processes.

Keywords Action monitoring - Alcohol - Anterior cingulate cortex - Blame attribution - Cognitive control - Corrugator supercilii -
ERP - Errors - Negative affect - Performance adjustments

Cognitive control refers to a set of cognitive processes that
allow individuals to guide their behavior in accordance with
internal goals (Alexander and Brown 2010; Braver 2012;
Gratton et al. 2018). A core component of cognitive control
is the ability to adjust behavior in response to varying situa-
tional demands (Botvinick et al. 2001). Considerable research
points to a neural circuit centered on the dorsal anterior cin-
gulate cortex (ACC) as critical to cognitive control,
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particularly for signaling when adjustments in control are
needed, i.e., following errors (Carter et al. 1998; Davis et al.
2005; Hall et al. 2007; Smith et al. 2019; Van Veen et al.
2001; Wang et al. 2005; Yeung et al. 2004). ACC responses
to errors can be observed in the amplitude of the scalp-
recorded error-related negativity (ERN), a response-locked
event-related potential (ERP) component that is much larger
during incorrect versus correct responses (Gehring et al. 1993;
Holroyd and Coles 2002; Van Veen and Carter 2002) and that
has been localized to ACC and neighboring structures in the
medial prefrontal cortex (Debener et al. 2005; Dehaene et al.
1994; Herrmann et al. 2004).

Impaired cognitive control is one of the acute effects of
alcohol (e.g., Casbon et al. 2003; Guillot et al. 2010).
Supporting evidence comes in part from studies showing that
alcohol reduces or eliminates adjustments in performance that
typically occur following errors (Bailey et al. 2014; Bartholow
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et al. 2012; Ridderinkhof et al. 2002). Additional evidence
comes from studies showing that alcohol reduces error-
related neurophysiological responses (Anderson et al. 2011;
Marinkovic et al. 2012), including the ERN (Bailey et al.
2014; Bartholow et al. 2012; Easdon et al. 2005; Nelson
et al. 2011; Ridderinkhof et al. 2002).

At least four explanations for alcohol-induced cognitive
control impairment have been offered. The first is that impair-
ment reflects alcohol-induced global deficits in executive
functions (Giancola 2000; Pihl et al. 2003). The second is that
impairment reflects alcohol-induced deficits in visual stimulus
processing (Yeung et al. 2007; Yeung and Cohen 2006). Both
of these explanations were challenged by Bailey et al. (2014),
who showed no effect of alcohol on conflict adaptation in
behavioral performance or neurophysiological correlates of
conflict monitoring (reactive control) processes during se-
quences of correct response trials. Acute effects of alcohol
on performance and neurophysiology were observed only af-
ter error commission. A third explanation is that impaired
cognitive control reflects deficits in error detection/
recognition under alcohol as evidenced by reduced ERN
(Ridderinkhof et al. 2002; also suggested in Yeung et al.
2007). This explanation was challenged by Bartholow et al.
(2012) and Bailey et al. (2014), who replicated the finding that
the ERN is reduced under alcohol, but also showed that par-
ticipants given alcohol were just as accurate in detecting/
recognizing their mistakes as participants given control and
placebo beverages. A fourth explanation, proposed by
Bartholow et al. (2012), is that impaired cognitive control
might reflect alcohol-induced reduction of affective reactions
to failures of control.

Negative affective reactions to failures of control, such as
error commission, are theorized to motivate post-error in-
creases in attention and improvements in performance (K.
Aarts et al. 2013; Dignath et al. 2020; Inzlicht et al. 2015;
Proudfit et al. 2013; Saunders et al. 2015). The idea that neg-
ative affective reactions may be especially important for cog-
nitive control is rooted in a long history of research showing
that the ACC is critically involved in the evaluation of distress
and pain (e.g., Ballantine et al. 1967; Rainville et al. 1997,
Talbot et al. 1991), that failures of control, such as error com-
mission, are aversive (Hajcak et al. 2004; Hajcak and Foti
2008), and that error-elicited activity in the ACC indexed by
ERN amplitude covaries with the motivational significance of
errors (Gehring et al. 1993; Gehring and Taylor 2004; Hajcak
et al. 2005). Viewed from this perspective, acute effects of
alcohol on error processing in cognitive control tasks could
reflect the drug’s well-known anxiolytic properties.

Acute alcohol has well-documented anxiolytic effects in
humans (for review, see Greeley and Oei 1999; Sayette
1999, 2017). Specifically, alcohol dampens subjective nega-
tive affective reactions (Bradford et al. 2013; Bujarski and
Ray 2014; Levenson et al. 1980; Ray et al. 2009, 2013; Sher
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et al. 2007) as well as facial expressions of negative affect
(Kushner et al. 1997; Sayette et al. 1992, 2012) in a dose-
dependent manner. It similarly dampens negative affective
reactions at the level of central nervous system activity (e.g.,
Curtin et al. 2001; Franken et al. 2007; Gorka et al. 2013) and
autonomic nervous system regulation (e.g., Bradford et al.
2013; Donohue et al. 2007; Sher et al. 1994, 2007; Udo
et al. 2009; Vaschillo et al. 2008).

Yet, the degree to which negative affect elicited by errone-
ous actions is reduced by alcohol remains unclear. Indirect
support for this idea comes from studies showing that both
alcohol-induced ERN reduction and impairments of post-error
performance adjustment can be mediated by alcohol-induced
decreases in subjective negative affect (Bartholow et al.
2012), and from studies showing that anxiolytic medication
(e.g., lorazepam) also reduces the ERN (De Bruijn et al.
2004). Direct support for this idea, however, requires an ap-
proach in which alcohol’s effects on negative affective reac-
tions can be precisely time-locked to error commission.

Decades of research point to reactivity in the corrugator
supercilii, the facial muscles that furrow the brow, as an ex-
cellent measure for this purpose (Cacioppo et al. 1984, 1986,
1988; Cacioppo and Petty 1981; Larsen et al. 2003; Tan et al.
2012; Tassinary et al. 1989; Vrana 1993). Corrugator super-
cilii reactivity, measured via electromyography (EMG)
(Fridlund and Cacioppo 1986), has been advanced as an indi-
cator of automatic (involuntary) expression of negative affect
(Dimberg et al. 1998, 2000, 2002; Dimberg and Thunberg
1998). Corrugator supercilii EMG (cEMGQG) activity increases
during exposure to different kinds of aversive stimuli (e.g.,
electric shock, loud noise, disgusting odors, upsetting pictures
and videoclips, angry and fearful faces, negative emotion
words) (Cacioppo et al. 1986; Dimberg et al. 1998, 2000;
Dimberg and Thunberg 1998; Hermann et al. 2000; Larsen
et al. 2003; Neumann et al. 2005; Rymarczyk et al. 2011;
Sestito et al. 2013). Additionally, aversive stimulus-elicited
cEMG activity may reflect neural activity in the ACC because
the latter has projections to the brainstem facial nucleus, which
innervates the corrugator (Cattaneo and Pavesi 2014;
Shackman et al. 2011). Consequently, error-elicited cEMG
activity may reflect error-elicited activity in ACC. In keeping
with this idea, response-locked cEMG waveforms show am-
plified activity shortly after error commission (Elkins-Brown
et al. 2016; Lindstrom et al. 2013), and this activity appears
related to the magnitude of the error positivity (Pe), an ERP
component that follows the ERN and has been linked to dis-
tinct aspects of error processing, such as conscious error rec-
ognition (Overbeek et al. 2005). Like the ERN, the Pe is
thought to emanate from the ACC (Falkenstein et al. 2000;
Herrmann et al. 2004).

Here, we revisited the experiment reported by Bailey et al.
(2014), which aimed to characterize performance (accuracy,
response time, confidence) as well as stimulus- and response-
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locked ERPs (N2, FSW, ERN) during a classic, effort-
demanding cognitive control task, the Eriksen flanker task
(B. A. Eriksen and Eriksen 1974), among participants who
had consumed alcohol, a placebo, or a control beverage. The
breath alcohol concentrations and placebo manipulation check
for this experiment were also published in the Bailey et al.
report. For the current report, we examined never-before-
reported cEMG activity elicited by errors and correct re-
sponses during the flanker task. We predicted (1) that
response-locked cEMG activity would be enhanced on erro-
neous versus correct response trials; (2) that cEMG activity
elicited by errors would be dampened following alcohol con-
sumption; (3) that cEMG activity elicited by errors would
correlate with ACC activation, as reflected in the amplitude
of the ERN and/or Pe components of the response-locked
ERP; and (4) that cEMG activity elicited by errors would
predict post-error performance adjustments.

Method
Participants

A total of 96 healthy young adult social drinkers (46% fe-
male; Myee =23.19 yra; N=96) from Columbia, MO, com-
pleted the single-session experimental study. Recruitment
strategy and study eligibility criteria were previously report-
ed (Bailey et al. 2014). Characteristics of the final analytic
sample for this report (N=74) are presented in
Supplemental Table 1.

Materials
Beverage administration

Details were previously published in Bailey et al. (2014).
Briefly, participants were randomly assigned to consume
one of three beverages during the experiment: an alcohol bev-
erage (dose =0.80 g/kg), an active alcohol placebo beverage
(dose =0.04 g/kg), or a control beverage. The alcohol bever-
age was 5:1 tonic to vodka (50% ABV). The placebo beverage
was 5:1 tonic to diluted vodka (9:1 flattened tonic to vodka).
Doses were calculated based on estimated total body water
and the duration of the drinking period (15 min) using pub-
lished formulae (Curtin and Fairchild 2003). The control bev-
erage was tonic. Beverages were divided into three drinks,
each consumed over 5 min. After the third drink, participants
sat idle for another 5 min to permit complete absorption.
Alcohol and placebo groups were told the beverage contained
“a moderate amount of alcohol.” The control group was told
that the beverage contained no alcohol.

Breath alcohol concentration

The concentration of alcohol in exhaled breath was measured
using a breathalyzer (Alco-Sensor IV; Intoximeters, Inc., St.
Louis, MO, USA). Breath alcohol concentration (BrAC) was
never shown to participants.

Cognitive control task

As previously reported in detail by Bailey et al. (2014), par-
ticipants completed an arrows version of the Eriksen flanker
task (B. A. Eriksen and Eriksen 1974; C. W. Eriksen and
Hoffman 1973; Gratton et al. 1992) adapted from
Ridderinkhof et al. (2002). Stimulus arrays were presented
for 100 ms and contained a left- or right-facing central arrow
plus two similarly or oppositely facing flanker arrows on each
side. Participants identified the direction of the central arrow
by pressing a left-hand or right-hand button on an ms-accurate
button box. Left- and right-hand responses were equally fre-
quent. On correct response-compatible trials, flanker arrows
faced the same direction as the central arrow. On correct
response-incompatible trials, flankers faced the direction op-
posite to the target. Correct response-compatible and
response-incompatible arrays were presented pseudo-
randomly and occurred with equal probability. Following a
button press on each trial, participants rated their confidence
in the correctness of their response (see Hester et al. 2005;
Nieuwenhuis et al. 2001; Payne et al. 2005). Three seconds
later, an inter-trial interval (randomly varying between 1100
and 1500 ms) occurred, after which the next trial began. Over
the course of seven practice blocks (28 trials/block), partici-
pants were titrated to a speed-accuracy balance that produced
approximately 10% errors. Participants making fewer errors
were instructed to speed up; those making more errors were
instructed to slow down. No feedback was given during the
subsequent experimental trials (10 blocks total, 80 trials/
block).

Electrophysiological recording

The scalp electroencephalogram (EEG) was recorded contin-
uously throughout the flanker task from 32 tin electrodes em-
bedded in a stretch-lycra cap (ElectroCap, Eaton, OH).
Electrode sites were prepared such that measured impedance
of the skin was <5 k(2. The EEG was referenced to the right
mastoid during recording. The surface electromyogram
(EMG) was recorded throughout the task from 0.25 cm Ag-
AgCl electrodes in a bipolar recording configuration placed
about 1 cm apart over the left corrugator supercilii, following
EMG recording guidelines (Fridlund and Cacioppo 1986).
The EMG signal was grounded to the middle of the forehead
near the hairline. Both EEG and EMG signals were amplified
using a Synamps2 amplifier (Compumedics Neuroscan,
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Charlotte, NC) and sampled at 1000 Hz. The EEG signal was
band-pass filtered online (0.05 to 40 Hz). A 20-500-Hz band-
pass filter was applied offline to the EMG to attenuate all slow
non-muscle potentials (De Luca et al. 2010; Fridlund and
Cacioppo 1986; Van Boxtel 2001). After recording, the
EEG was re-referenced to an average of the two mastoids.
Ocular artifacts (blinks) were removed from EEG and EMG
using regression-based procedures (Semlitsch et al. 1986).

EEG data were segmented into epochs of — 200 to 1200 ms
of post-response activity. Epochs containing artefactual de-
flections (exceeding + 75 1V; e.g., due to major muscle move-
ment) were rejected (28.36% of trials/subject). Average volt-
age from 200 to 100 ms before response onset was subtracted
from the rest of the waveform. Inspection of the grand average
ERP waveforms indicated a negative-going voltage deflection
peaking between 25 and 75 ms post-response that was maxi-
mal over the fronto-central scalp, corresponding to the ERN
and its correct response analog, the correct-related negativity
(CRN), as shown in Fig. 3a. There was also a later, broader,
positive-going deflection peaking between 150 and 450 ms
that was maximal over the centro-parietal scalp, correspond-
ing to the Pe and its correct response analog, the correct pos-
itivity (Pc), as shown in Fig. 4a. Consequently, the ERN/CRN
in each retained epoch was quantified as the average voltage
in the 25-75-ms post-response window on the frontal and
central electrode sides (Fz, F3, F4, FCz, FC3, FC4, Cz, C3,
C4). The Pe/Pc was quantified in each retained epoch as the
average voltage in the 150—450-ms post-response window on
the centro-parietal and parietal electrode sides (CPz, CP3,
CP4, Pz, P3, P4).

cEMG data were segmented into two sets of epochs:
200 ms of pre-stimulus activity and —200 to 1200 ms post-
response activity. The root mean square voltage was comput-
ed for each 100-ms bin. Epochs containing artefactual deflec-
tions (i.e., exceeding + 3.5 standard deviations from the aver-
age activity in the epoch or from the average activity across all
epochs for the subject) were rejected (1.98% of trials/subject
for pre-stimulus epochs and 1.91% of trials/subject for
response-locked epochs). Retained pre-stimulus epochs were
averaged together (collapsing the two bins) to produce each
subject’s overall average pre-trial cEMG (presented in Online
Supplemental Information). Retained response-locked cEMG
epochs were baseline corrected by subtracting the average root
mean square voltage in bin “-2” (which corresponded to the —
200 to — 100-ms post-response window) from the other bins in
the epoch.

Procedure
Figure 1 summarizes the experimental procedure and shows

the timing of different within-session events. Procedural de-
tails were previously published in Bailey et al. (2014).
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Results

Of 96 participants, three (all control group) were excluded due
to equipment malfunction (they also were excluded in Bailey
et al. 2014). Stored data were lost for two participants (1 al-
cohol group, 1 placebo group). Data from four participants (1
alcohol group, 2 control group, 1 placebo group) were exclud-
ed due to unstable baseline cEMG." Data from 11 participants
(2 alcohol group, 3 control group, 6 placebo group) were
excluded because fewer than six error trials with artifact-free
cEMG and ERP data were available for analysis.? Thus, our
final analytic sample consisted of 74 participants (21 control
group, 28 alcohol group, 25 placebo group). Given that this
sample differs substantially from that used by Bailey et al.
(2014), it was necessary to re-analyze certain measures critical
for understanding the current report. Re-analyses of BrAC,
flanker task performance, and ERN data are presented in the
main text. Re-analyses of placebo manipulation check and
subjective intoxication data are presented in Online
Supplemental Information. Readers also are referred to
Online Supplemental Information for analyses of pre-trial
cEMG and subjective affect data. Briefly, pre-trial cEMG
levels were reduced in the alcohol relative placebo and control
groups (but note that response-locked cEMG data were base-
line corrected). There were no beverage effects on subjective
affect data. Manipulation check and subjective intoxication
scores indicated a convincing placebo.

BrAC

Repeated-measures ANOVA indicated a significant main ef-
fect of the repeated measure (5 levels of “assessment”: #2—6),
F(4,104)=5.207, p<0.001, * = 0.003. As shown in Fig. 2,
pairwise comparisons indicated an increase in BrAC from
assessment 3 to 4 capturing the final ascent to peak BrAC,
#27)=5.340, p<0.001, d=2.094, and successive decreases
in BrAC from assessment 4 through 6 capturing the initial
descent from peak BrAC, #27)>1.995, p<0.057, d>0.782.

! As indicated by mean pre-trial cEMG + 2.5 SD from the grand mean. Such
extreme values are most likely due to poor cEMG recording (e.g., poor skin
preparation, poor electrode placement, sweating).

2 Prior psychometric work on ERP indices of performance monitoring (Olvet
and Hajcak 2009; Rietdijk et al. 2014) indicates that ideally six or more
artifact-free error trials are needed to measure error-related neurophysiological
signals reliably within individuals. Initial psychometric work on response-
locked cEMG has focused on within-person standardized activity, and sug-
gests that ideally 14 or more artifact-free error trials are needed for reliable
estimates of error-induced activity (Elkins-Brown et al. 2016, 2017). Since it is
unclear that the latter guideline can be applied to non-standardized cEMG
(given that standardization distorts the EMG waveform), we applied the “six
or more artifact-free error trials” guideline from the performance monitoring
ERP psychometrics literature.
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Fig. 1 Timeline of within-session events. Numbers below the line indicate
planned timing. Arrival: Participants provided informed consent,
indicated compliance with pre-study protocols, and were randomly
assigned to a beverage condition (alcohol, placebo, control).
Participants then completed a questionnaire battery unrelated to the cur-
rent report. Dashed arrows: At several times across the session, all par-
ticipants completed brief questionnaires to assess subjective affect (see
Online Supplemental Information). At these times, BrAC also was mea-
sured in alcohol and placebo group participants. At arrival, however,
BrAC was measured in all participants to confirm sobriety (0.000 g%).
Preparation (Prep.): Experimenters escorted the participant to a record-
ing chamber, measured height and weight, and then placed and tested
electrodes for electrophysiological recording. Practice: Participants com-
pleted 5 blocks of practice trials for the cognitive control task before

Response-locked ERPs
ERN/CRN

ANOVA?® on ERN/CRN mean amplitudes considered the
between-subject factor of the beverage group (3 levels: alco-
hol, placebo, control), the within-subject factor of the current
trial response accuracy (2 levels: correct, incorrect), and their
interaction, controlling for the within-subject factor of the
electrode (9 levels: Fz, F3, F4, FCz, FC3, FC4, Cz, C3, C4).
ANOVA detected a significant beverage group x response
accuracy interaction, F(2, 1315)=15.520, p=.004, 172 =
0.016, evident in Fig. 3b. We followed up on this interaction
by testing a planned directional prediction based on what was
found in the larger sample (Bailey et al. 2014). Specifically,
we tested whether the ERN was significantly less negative for
the alcohol group compared to the control and placebo groups
using a 1-sided, independent-samples ¢ test. This prediction
was confirmed: #72)=2.026, p=0.023, d=0.478. In con-
trast, the ERN was similar between the control and placebo
groups, #(44)<0.082, p>0.247, d<0.025.

Pe/Pc

This response-locked ERP component was not considered by
Bailey et al. (2014), but we were interested in it as a potential
predictor of response-locked cEMG activity and, thus,

3 Repeated-measures ANOVA was used for response-locked ERP analyses
(instead of linear mixed modeling [LMM], which was used for response-
locked cEMG analyses) because the effect of beverage on ERN/CRN and
Pe/Pc mean amplitudes is not of central interest in this report. Furthermore,
similar results were obtained when we re-analyzed the ERN/CRN and Pe/Pc
mean amplitudes at the trial level using LMM, following Volpert-Esmond
et al. (2018). For simplicity, only ANOVA results are presented.

150 175 190 210 Time (min)

beverage administration, and 2 blocks of practice trials afterward.
Beverage administration (Bev.): Experimenters prepared beverages in
front of participants, and participants then consumed the beverage (three
drinks, 5 min/drink). Task: Participants completed 10 blocks of experi-
mental trials of the cognitive control task with breaks occurring after
blocks 3 and 7. Post: Experimenters detached electrodes and escorted
participants to the restroom where the latter could wash recording gel
from their face and hair. All groups then completed a post-experiment
questionnaire. For the alcohol and placebo groups, the latter contained a
placebo manipulation check (see Online Supplemental Information). All
participants were then debriefed. Exiz: Participants in the control and
placebo groups were dismissed. Participants in the alcohol group were
retained until BrAC <0.02 g%

quantified and analyzed it here. ANOVA?® on Pe/Pc mean
amplitudes considered the between-subject factor of the bev-
erage group (3 levels: alcohol, placebo, control), the within-
subject factor of the current trial response accuracy (2 levels:
correct, incorrect), and their interaction, controlling for the
within-subject factor of the electrode (6 levels: CPz, CP3,
CP4, Pz, P3, P4). Neither the main effect of the beverage
nor its interaction with response accuracy was significant,
F(2, 876)<2.180, p >0.114, 772 =0.007, in keeping with
Fig. 4a. ANOVA detected only a significant main effect of
response accuracy, F(1, 876)=611.320, p <0.001, nz =
0.408. This within-subject effect was due to a larger (more
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Fig. 2 Breath alcohol concentration (BrAC) across post-drinking
assessments. Sample M and SEM are shown (n=28). BrAC at
assessment 1, which took place before drinking, was 0.000 g%.
Assessment 2 took place 5 min after drinking and before starting the
cognitive control task experimental trials. Assessments 3, 4, and 5 took
place after cognitive control task experimental trial blocks 3, 7, and 10,
respectively. Assessment 6 took place after electrodes were detached
but before debriefing. Asterisk indicates p < 0.05
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Fig. 3 ERN/CRN as a function of beverage group and response
accuracy. a Waveforms shown represent the average across frontal,
fronto-central, and central electrodes elicited by correct (“Corr”) and
erroneous (“Err”) responses. “R” on the x-axis denotes time of button
press. Note that the y-axis is reversed flowing convention for ERPs.
Window (25-75 ms) for component mean amplitude quantification

positive) mean amplitude following erroneous compared to
correct responses, #(73)=12.732, 2-sided p <0.001, d =
2.980.

Response-locked cEMG activity

Trial-by-trial response-locked corrugator EMG waveforms
were analyzed using linear mixed models (LMMs) in R ver-
sion 3.6.0 using packages Ime4 (Bates et al. 2015), ImerTest
(Kuznetsova et al. 2017), and emmeans (Lenth 2019) in order
to best account for the nested structure of repeated psycho-
physiological measurements (E. Aarts et al. 2014; Page-Gould

denoted by the yellow rectangle. b Mean amplitudes shown represent
average across frontal, fronto-central, and central electrodes. Note that
the y-axis is reversed because ERN/CRN are negative-going ERP com-
ponents. Asterisk indicates p < 0.05. a, b Sample M = SEM shown for the
no-alcohol control group (n=21), placebo alcohol group (n=25), and
alcohol group (n=28)

2019). Technical details are presented in Online Supplemental
Information.

Hypothesis 1 To test the prediction that response-locked
cEMG activity would be enhanced on erroneous versus cor-
rect response trials, we considered the simple slopes of bin and
bin? as a function of response accuracy. In keeping with our
prediction, the simple slope of bin was more positive for er-
roneous compared to correct response trials, A b + SE =0.028

+0.006 uV/bin, z=15.022, p<0.001, and the simple slope of
bin® was more negative for erroneous compared to correct
response, A b+SE=0.0019 +0.0005 pV/bin?, z=4.146,
p<0.001.

10.0
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Fig. 4 Pe/Pc as a function of beverage group and response accuracy. a
Waveforms shown represent the average across centro-parietal and pari-
etal electrodes elicited by correct (“Corr”) and erroneous (“Err”) re-
sponses. “R” on the x-axis denotes time of button press. Note that the y-
axis is reversed following convention for ERPs. Window (150—450 ms)
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for component mean amplitude quantification denoted by the yellow
rectangle. b Mean amplitudes shown represent average across centro-
parietal and parietal electrodes. a, b Sample M+ SEM shown for the
no-alcohol control group (n=21), placebo alcohol group (n=25), and
alcohol group (n =28)
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Hypothesis 2 To test the prediction that error-elicited cEMG
activity would be dampened in the alcohol relative to control
and placebo groups, we first considered the simple slopes of
bin and bin as a function of response accuracy within groups.
We then considered whether the simple slopes of bin and bin®
for erroneous response trials differed among groups. In keep-
ing with our prediction, the simple slope of bin was more
positive for erroneous compared to correct response trials in
the control group, Ab+SE =0.052+0.011 pV/bin, z =4.839,
p<0.001, and in the placebo group, A b+=SE=0.029 +

0.010 wV/bin, z=2.910, p =0.004, but not in the alcohol
group, A b+ SE=0.004+0.008 uV/bin, z=0.494, p=

0.6211. Similarly, the simple slope of bin* was more negative
for erroneous compared to correct response trials in the control
group, A b+ SE=0.0037+0.0009 uV/bin®, z=4.101,
p<0.001, and the placebo group, A b+SE=0.0027 +

0.0008 uV/binz, z=3.389, p<0.001, but not the alcohol
group, A b+ SE=—0.0006+0.0007 uV/bin®, z=0.863, p=

0.388. Furthermore, the simple slopes of bin for erroneous
response trials were significantly more positive for the control
and placebo groups compared to the alcohol group, A b+

SE>0.042+0.013 pwV/bin, z>3.350, p < 0.001, and the cor-
responding simple slopes of bin” were significantly more neg-
ative, b+ SE <—0.004+0.001 wV/bin’, z>3.398, p <0.001.
The simple slopes of bin and bin? for erroneous response trials
were not significantly different between the control and pla-
cebo groups, z<0.423, p>0.672.% Group differences are ev-
ident in the average and LMM-estimated response-locked
cEMG waveforms (Fig. 5a, b).

Hypothesis 3 To test the prediction that error-elicited cEMG
activity would correlate with error-elicited neural activity in
the ACC, as reflected in the amplitude of the ERN and/or Pe
components of the response-locked ERP, we added new ef-
fects to the best LMM of the trial-by-trial cEMG waveform.
Since this hypothesis concerns within-trial associations with-
in-persons, we first isolated within-person trial-by-trial chang-
es in ERN and Pe following previous work from our labora-
tory (Von Gunten et al. 2018). Technical details are presented
in Online Supplemental Information.

In keeping with our prediction, in the control group,
erroneous response-elicited cEMG activity tended to be
greater overall when the same-trial ERN was large (i.e.,
more negative), b+ SE=—0.005+0.002 puV cEMG per
nV ERN, z=-2.965, p=0.003. As shown in Fig. 6, this

* For completeness, we also considered whether the simple slopes of bin and
bin? for correct response trials differed among groups. Ordering of the simple
slope of bin was as follows: placebo > alcohol > control, pairwise compari-
sons: z>2.337, p<0.019. Ordering of the simple slope of bin® was as follows:
control > alcohol (z = 1.793, p = 0.073) > placebo, pairwise comparisons:
z > 3.020, p < 0.005. These patterns are consistent with highly specific
cEMG reactivity to errors in the control group, and some specificity loss in
the alcohol or placebo group, though most evident in the latter.

association was reversed in the placebo group, »+SE =
0.007£0.001 uV cEMG per uV ERN, z=4.866,
»<0.001, and nullified in the alcohol group, b+ SE=
0.0005+0.0011 uV cEMG per uV ERN, z=0.471, p=
0.638. Also, in keeping with our prediction, for the con-
trol group, the simple slope of bin in erroneous response
trials became significantly more positive with increasing
(i.e., more positive) Pe, b= SE=0.523+0.110 uV cEMG
per bin per uV Pe, z=4.746, p<0.001, and the corre-
sponding simple slope of bin’ became significantly more
negative, b+ SE =—0.0585+0.0092 uV ¢EMG per bin?
per uV Pe, z=-6.385, p<0.001, effects evident in
Fig. 7. In contrast, for the placebo group, the simple
slopes of bin and bin® in erroneous response trials were
not significantly affected associated with Pe, z<1.174,
p>0.241. For the alcohol group, the simple slope of bin
in erroneous response trials became significantly more
negative with increasing (i.e., more positive) Pe, b=+
SE=-0.305+£0.091 uwV cEMG per bin per uV Pe, z=
—3.352, p<0.001, and the corresponding simple slope of
bin® became significantly more positive, b+ SE =0.025 +
0.008 wV cEMG per bin® per uV Pe, z=3.332, p<0.001.

Hypothesis 4 To test the prediction that post-error cognitive
control adjustments would be informed by affective reactiv-
ity to error commission, we first evaluated evidence for
post-error reduction of interference (PERI) in the flanker
task, a post-error behavioral effect linked to cognitive con-
trol processes (Burle et al. 2002; Danielmeier and
Ullsperger 2011; King et al. 2010; Ridderinkhof et al.
2002). The flanker task interference effect manifests as low-
er accuracy (probability of correct response), and larger
(slower) correct response times (RTs), on trials with correct
response-incompatible relative to response-compatible
flanker stimuli. Consequently, we fit LMMs of trial-by-
trial accuracy and RT as a function of beverage group, cur-
rent trial flanker type (correct response-compatible vs. re-
sponse-incompatible), and previous trial response accuracy
(correct vs. erroneous response) accounting for time on
task. After determining the best LMMs of accuracy and
RT, we added new effects corresponding to isolated with-
in-person, trial-by-trial changes in previous trial response-
locked cEMG activity, following Von Gunten et al. (2018).
Technical details are presented in Online Supplemental
Information. As shown in Fig. 8, PERI was evident in ac-
curacy, but not in RT, and did not differ by beverage group.
Other effects evident in the best LMMs (e.g., beverage ef-
fects on the flanker task interference effect, beverage effects
on other post-error adjustments) are presented in Online
Supplemental Information. Critically, contrary to our pre-
diction, there was no evidence for associations between
error-elicited cEMG on one trial and performance (accuracy
or RT) on the next trial.
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Fig. 5 Response-locked cEMG activity as a function of beverage group
and response accuracy. a Sample M and SEM are shown. b Estimated
marginal population M and SE from the best conditional LMM are
shown. a, b Data represent n =21 participants who consumed the no-

Discussion

The current study examined negative affective reactions to
error commission in the flanker task following consumption
of an alcohol, placebo, or control beverage by measuring
response-locked cEMG activity. Four hypotheses were tested:
(1) cEMG activity would be enhanced following erroneous
versus correct responses; (2) error-elicited cEMG activity
would be dampened in the alcohol group; (3) error-elicited
cEMG activity and error-elicited neural activity in the ACC,
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alcohol control beverage, n =25 who consumed the placebo alcohol bev-
erage, and n =28 who consumed the alcohol beverage. On the x-axes,
“R” indicates button press. Y-axes differ between a and b. Some error bars
are hidden underneath the point symbols

as indexed by the ERN and/or Pe components of the response-
locked ERP, would be correlated; and (4) error-clicited cEMG
activity would be correlated with post-error adjustments in
cognitive control task performance.

Hypothesis 1 was supported, replicating previous work on
error-elicited cEMG activity (Berger et al. 2020; Dignath et al.
2019; Elkins-Brown et al. 2016, 2017; Lindstrom et al. 2013).
Hypothesis 2 was also supported, providing empirical weight
to the idea that alcohol consumption might decrease negative
affective reactions to erroneous actions in effort-demanding
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cognitive control tasks, as first proposed by Bartholow et al.
(2012). Although not hypothesized, we also found that pre-
trial cEMG activity in the flanker task was selectively damp-
ened in the alcohol group (see Online Supplemental informa-
tion). Given that response-locked cEMG activity was
corrected for pre-response activity, this effect suggests that
there may be acute effects of alcohol on both tonic affective
state and phasic error reactivity. Previous studies using
between-subject designs and similar participants have failed
to find acute effects of alcohol on stimulus-locked cEMG in
the context of a passive picture-viewing task (Curtin et al.
1998; Glautier et al. 2001; Stritzke et al. 1995), which is con-
sistent with the idea that certain effects of alcohol are restricted

@ Springer

< Fig.8 Correct response probability and response time (RT) as a function

of current trial flanker type and previous trial response accuracy. a Back-
transformed marginal population M and SE estimated from the best con-
ditional generalized LMM (binomial, logit) of accuracy are shown. Post-
error reduction of interference (PERI) was detected: difference in predict-
ed probability of correct response when the current trial contains correct
response-compatible vs. response-incompatible flankers was significantly
diminished when previous trial response was incorrect relative to correct.
PERI effect was driven by a significant increase in the probability of
correct response on correct response-incompatible trials after an incorrect
relative to correct response. b Marginal population M and SE estimated
from best conditional LMM of RT are shown. PERI was not detected:
difference in RT due to flanker type was similar post-error vs. -correct
trial. a, b Data represent n = 21 participants who consumed the no-alcohol
control beverage, n =25 who consumed the placebo alcohol beverage,
and n =28 who consumed the alcohol beverage. Nevertheless, LMMs
found no support for beverage x current trial type x previous trial re-
sponse accuracy effects (these LMM-estimated marginal Ms and SEs
and corresponding sample Ms and SEMs are presented in Supplemental
Fig. 5). Consequently, only the current trial type X previous trial response
accuracy effects are shown. Note that the current trial type X previous trial
response accuracy effect was not significant for RT, and was ultimately
dropped from the best LMM of RT used to test effects of previous trial
cEMG. Note also that all LMM-estimated Ms and SEs shown control for
other effects evident in the LMMs (e.g., beverage X current trial type,
beverage x previous trial response accuracy). Asterisk indicates p < 0.05

to active and self-relevant contexts (for review, see Sayette
2017).

Hypothesis 3 was supported in the control group, providing
in principle replication of findings reported by Elkins-Brown
etal. (2016) and confirmation of ideas proposed by Lindstrom
et al. (2013). This finding suggests that negative affective
reactions to errors, at least as indexed by cEMG activity, are
shaped by both early (ERN) and late (Pe) error processing-
related neural activity in the ACC. Specifically, under normal
circumstances, the magnitude of negative affect elicited by
error commission may be set primarily by early ACC activity
captured in the ERN, whereas how quickly that negative af-
fective response is emitted relative to error commission and
how quickly it dissipates appear to be tuned by later ACC
activity captured in the Pe.

Hypothesis 3 was not supported in the alcohol or placebo
group. Within-trial associations between ERN or Pe and error-
elicited cEMG activity in these groups were inconsistent.
ERN failed to predict overall error-elicited cEMG activity in
the alcohol group, perhaps in keeping with selective dampen-
ing of the ERN in this group. In contrast, Pe predicted a dip
below pre-response baseline for error-elicited cEMG activity
in the alcohol group, although the Pe did not differ across
groups. Nonetheless, error-elicited cEMG activity was largely
abolished in the alcohol group. Consequently, it is possible
that within-trial ERP-cEMG associations in the alcohol group
are statistical artifacts. It is difficult to apply the same logic to
explain within-trial ERP-cEMG associations in the placebo
group. Erroneous actions still elicited cEMG activity in the
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placebo group, even if less robustly than in the control group.
Yet, in the placebo group, ERN predicted dips below pre-
response baseline in overall error-elicited cEMG activity,
and Pe failed to predict error-elicited cEMG activity. There
were no differences in ERN or Pe between the placebo and
control groups.

We are left with one substantive factor to explain differen-
tial ERP-cEMG coupling in the control versus placebo
groups, namely, activation of alcohol use-outcome expectan-
cies in the latter group. To the extent that affective reactions to
error commission are shaped by attributional processes, then
the expectation of sub-optimal performance due to alcohol
(i.e., attribution to an external cause) could explain why
error-elicited cEMG was uncoupled from ERN and Pe in
placebo-consuming participants (see Testa et al. 20006). It also
could explain dampened error-elicited cEMG in placebo- vs.
control beverage-consuming participants despite equivalent
ERN and Pe. Consequently, one reason why errors failed to
elicit cEMG in alcohol-consuming participants may have been
that they too were liable to externalize blame for their mis-
takes. There is some precedent for such an account (e.g.,
Critchlow 1987; Isleib et al. 1988). Future studies could test
this idea by manipulating participants’ beliefs about the locus
of performance deficits prior to task completion (e.g., partic-
ipants could be convinced that alcohol does not diminish per-
formance on the task while covertly titrating task difficulty to
promote error commission). Alternatively, participants’ biases
toward explicitly externalizing vs. internalizing success and
failure could be measured (e.g., using false feedback) while
sober vs. intoxicated.

Hypothesis 4 was not supported. Performance data pro-
vided no support for the idea that error-elicited negative
affect is coupled to post-error adjustments in performance,
or our contention that alcohol-induced diminution of
error-elicited negative affect has implications for adjust-
ment of cognitive control. In hindsight, we propose two
reasons for this apparent failure. First, the experiment was
not optimally designed to test questions about the associ-
ation between affective reactivity to errors and subsequent
control adjustment per se. Rather, it was designed specif-
ically to test alcohol’s effect on the first part of this pre-
mise, i.e., that alcohol reduces negative affective reactions
to errors, as indicated by ERN and error-elicited cEMG
activity. This was our primary interest. The experiment
was designed to provide an alternative explanation for
alcohol-induced reduction of the ERN, the first demon-
stration of which was reported by Ridderinkhof et al.
(2002), who argued that alcohol reduced the ERN by
impairing participants’ ability to recognize when they
made mistakes. Our alternative hypothesis has been that
alcohol does not impair the ability to recognize when
errors are made—indeed, data from this experiment (as
reported in Bailey et al. 2014) and a separate experiment

(Bartholow et al. 2012) strongly support this idea—but
rather that alcohol reduces the ERN because it mollifies
negative affective reactions to control failures—a predic-
tion confirmed by the response-locked cEMG data report-
ed here. The desire to test this alternative hypothesis led
us to modify Ridderinkhof et al.’s original paradigm by
introducing response accuracy confidence judgments fol-
lowing each trial. This design feature had the unfortunate
side effect of introducing long inter-trial intervals (=5 s)
into the task, which make it difficult to test whether error-
elicited negative affect on a given trial influences perfor-
mance on the subsequent trial.

A second possible reason why we failed to find associa-
tions between error-elicited cEMG activity and subsequent-
trial performance is that participants likely had little motiva-
tion to adjust their behavioral performance. There was no
penalty for errors or slow responses (and no performance
feedback during the experimental trials) and no real benefit
for accurate or fast responses. Over the course of a nearly
hour-long task, participants likely lost motivation for engag-
ing control in a consistent manner. Thus, although the cEMG
and ERN data support the idea that errors in the task elicited
some negative affect, and that alcohol reduced affective reac-
tions to errors, there likely was little motivation on the part of
participants to translate affective reactions into control adjust-
ments (e.g., see Boksem et al. 2006).

Findings from the current study should be considered
in light of its strengths and weaknesses. The current study
improved upon previous work in two important ways.
First, it joins two studies (Dignath et al. 2019; Elkins-
Brown et al. 2017) in showing that error-elicited cEMG
activity can be observed in the absence of explicit feed-
back about response accuracy as well as in the absence of
a threat (risk) of erroneous response-contingent punish-
ment, which has been shown to amplify overall (Curtin
et al. 1998) and error-elicited cEMG activity (Lindstrom
et al. 2013). Second, the current study used statistical
methods (i.e., LMM) that are arguably more statistically
powerful yet conservative, if not at least more appropriate,
for modeling psychophysiological data (E. Aarts et al.
2014; Page-Gould 2019). The use of this methodology
allowed us to model the response-locked cEMG wave-
form, its sensitivity to within- and between-person factors,
and change in the waveform across the task.

Despite these strengths, the current study was not without
limitations. First, wetested asinglealcoholdoseinabetween-
subject design, yet effects of alcohol on affective state and
reactivity can vary in extent, nature, and specificity with dose
(Donohue et al. 2007; for review, see Sayette 2017). Second,
participants were predominantly non-Hispanic White young
adults. Third, wefoundnoacuteeffectofalcoholonsubjective
affect, despite repeated assessment, including during the
flanker task (see Online Supplemental Information).
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However, subjectiveaffectassessmentduringthetask wasnot
time-locked to errors, unlike in Spuntetal. (Spuntetal.2012).
Fourth, the probability of errors across the task was low, lim-
itingthenumberoferrortrialsavailable foranalysis. Accuracy
was titrated to be 90% correct, by design, to ensure that bev-
erage effects on cognitive control task-related ERPs were not
confounded by major differences in the frequency of correct
versus incorrect responses. The relatively low frequency of
errors in this study and others like it (Berger et al. 2020;
Dignath et al. 2019; Elkins-Brown et al. 2016, 2017,
Lindstrom et al. 2013) imposes psychometric constraints on
measured responses to error commission independently of
and/or in addition to the constraints imposed by the type of
measurement (i.e., subjective, neuro/psychophysiological).
Thus, futurestudies should parametrically manipulate the fre-
quency of error commission.

Keeping in mind its strengths and weaknesses, the current
study has implications for understanding the acute effects of
alcohol on cognition. Specifically, its findings suggest that the
acute effects of alcohol on canonical cognitive control tasks
sometimes may reflect acute effects of alcohol expectancy and
pharmacology on the affective underpinnings of action mon-
itoring and, more broadly, cognitive control. Continued work
on the affective underpinnings of cognitive control (Dignath
et al. 2020; Inzlicht et al. 2015) stands to improve our basic
understanding of not only decision-making and self-
regulation but also how the latter might be affected by the
acute and/or chronic effects of psychoactive substances, in-
cluding alcohol.
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