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A B S T R A C T

The incentive salience sensitization (ISS) theory of addiction holds that addictive behavior stems from the ability
of drugs to progressively sensitize the brain circuitry that mediates attribution of incentive salience (IS) to
reward-predictive cues and its behavioral manifestations. In this article, we establish the plausibility of ISS as an
etiological pathway to alcohol use disorder (AUD). We provide a comprehensive and critical review of evidence
for: (1) the ability of alcohol to sensitize the brain circuitry of IS attribution and expression; and (2) attribution of
IS to alcohol-predictive cues and its sensitization in humans and non-human animals. We point out gaps in the
literature and how these might be addressed. We also highlight how individuals with different alcohol subjective
response phenotypes may differ in susceptibility to ISS as a pathway to AUD. Finally, we discuss important
implications of this neuropsychological mechanism in AUD for psychological and pharmacological interventions
attempting to attenuate alcohol craving and cue reactivity.

1. Introduction

Of all substances of abuse, alcohol is the most commonly used and,
arguably, the one with the greatest combined cost to individuals and
society (Nutt et al., 2010, 2007). Although many individuals are able to
use alcohol without developing an alcohol use disorder (AUD), results
from the 2012 to 2013 National Epidemiologic Survey on Alcohol and
Related Conditions III (NESARC-III) suggest that approximately 73 % of
all non-institutionalized adults in the USA (≥18 years of age) used
alcohol at least once in the past year and that 15 % those who used
alcohol in the past year met diagnostic criteria for AUD (Grant et al.,
2017). This means that, in the USA alone, the number of adult alcohol
users with active AUD in any given year is larger than the estimated
total number of living adults residing in any one state or territory ex-
cept California (27,432, 000 or 11 % of the approximate 254, 000, 000
adults estimated to be living in the USA in 2018; Census Bureau, Po-
pulation Division). Heavy alcohol use puts individuals at greater risk for
cancers and cardiovascular disease (Connor, 2017; Wood et al., 2018).
The myriad negative medico-legal consequences of excessive alcohol
use, such as assault, automobile accidents, gun accidents, rape, suicides,
and unwanted pregnancies, create serious costs to society (Bouchery
et al., 2011; Hingson et al., 2009; Naimi et al., 2003; Smith et al., 1999;
Walsh and Macleod, 1982; Wechsler et al., 2002; Whiteford et al., 2013;
Wintemute, 2015). Consequently, there is a great need to understand

the biomedical and psychosocial factors that determine excessive al-
cohol use, including the development of AUD.

An unfortunate reality that hinders this scientific mission is het-
erogeneity in the clinical presentation and course of AUD (Babor et al.,
1992; Cloninger, 1987; Jellinek, 1960). This heterogeneity has been
met with numerous attempts to match different “subtypes” of AUD with
different treatment approaches, but largely with disappointing results
(Allen et al., 1998, 1997). Current approaches to understanding AUD
heterogeneity and its consequences for both theory and intervention are
informed by broader frameworks for understanding all manner of
psychiatric conditions. In particular, the National Institute of Mental
Health (NIHM) research domain criteria (RDoC) framework (Insel et al.,
2010; Insel and Cuthbert, 2015) has provided an architecture with
which multiple causal factors stemming from diverse, biologically
grounded systems can be organized for understanding the development
and progression of AUD. The RDoC framework emphasizes studying the
putative underlying causes (e.g., dysregulated neural circuits) of dis-
orders and aims to generate biologically-meaningful, comprehensive
descriptions that might form the basis for new classification schemes,
which may be dimensional rather than categorical. The application of
the RDoC framework to understanding heterogeneity in AUD has been
termed the Alcohol Addiction RDoC (AARDoC) (Litten et al., 2015). The
AARDoC organizes research across units of analysis (viz., from genes to
brain to behavior, including self-report) relevant to AUD liability and
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promotive processes, and may lead to useful insights about etiology and
treatment of AUD.

One of the research domains proposed for the AARDoC is the extent
to which alcohol-associated cues acquire “incentive salience.”1 In-
centive salience is a construct that refers to the motivational sig-
nificance attributed to exteroceptive and interoceptive stimuli that re-
liably predict rewards, via Pavlovian conditioning (Bevins and Besheer,
2014; Paulus et al., 2009; Robinson et al., 2014; Robinson and Berridge,
1993; Saunders and Robinson, 2013). Among the exteroceptive stimuli
that can come to predict ethanol ingestion and/or intoxication are the
sight, smell, and taste of a preferred alcoholic beverage, the implements
used to contain, prepare, and/or consume the beverage, and the sounds
of accessing and/or transferring a container’s contents. Given that ex-
periencing the diverse interoceptive stimuli involved in or produced by
beverage ingestion, including the pharmacological effects of ethanol, is
contingent upon the individual’s interaction with or manipulation of
the alcoholic beverage, its container, and other implements, these cues
are especially likely to acquire incentive salience (Tomie, 1996; Tomie
and Sharma, 2013). Nevertheless, context matters—the ability of these
alcohol-associated cues to promote alcohol use in daily life is likely
greatest when they are encountered at the “right” place and time,
around the “right” people, and in the “right” emotional state (Marlatt,
1996; Niaura et al., 1988).

One neurobiological theory of addiction that directly addresses how
drug-associated cues come to affect individuals’ behavior is the in-
centive salience sensitization theory of addiction (ISST) (Berridge et al.,
2009; Berridge and Robinson, 2016, 2003; Robinson and Berridge,
2001, 2000, 1993). The ISST holds that different brain circuits are re-
sponsible for attributing hedonic versus incentive value to cues and
rewards. The ISST posits that addictive behavior stems from the ability
of drugs to progressively sensitize the brain circuitry responsible for
attributing IS, such that the individual becomes hyper-reactive to the
motivational properties of learned drug-predictive stimuli.2 Critically,
the drug-induced sensitization of IS attribution to drug-predictive cues
is theorized to progress independently of changes in the hedonic value
attributed to either the drug or its cues. The dissociation of hedonic and
incentive value can help explain why some people may verbalize ex-
plicit goals and reasons for abstaining from or moderating alcohol use,
and yet: (1) find themselves drawn toward alcoholic beverages or
people and places associated with alcohol use (e.g., bars, neighborhood
pub, old drinking buddies); or (2) find it difficult to stop drinking after
their first drink; or (3) find it nearly impossible to stop thinking about
alcohol under certain circumstances (e.g., after stressful events, certain
times of day or the week). Through alcohol-induced incentive salience
sensitization (ISS), alcohol-associated cues may be increasingly imbued
with the power to instigate alcohol seeking and consumption despite a
person’s conscious beliefs, goals, and intentions. For this reason, ISS
may not only be a mechanism of AUD development but also main-
tenance and relapse.

In this article, we argue for ISS as a mechanism relevant to AUD in
humans. In order to do so, we first provide a summary review of the
neural circuitry theorized to mediate attribution of incentive salience
(IS) to reward-predictive cues and the behavioral and psychological
manifestations of this process. Readers interested in more in-depth

coverage of the neurobiology are referred to (Flagel and Robinson,
2017). We then review evidence from work with preclinical non-human
animal models for the ability of ethanol, the addictive agent in alcoholic
beverages, to induce neuroadaptations that may mediate ISS. Finally,
we review evidence for IS attribution to alcohol-associated cues and its
sensitization (ISS) in humans and non-human animals.

1.1. Scope and limitations

The current narrative review is not intended as a comprehensive or
exhaustive review of all possible scientific evidence that speaks to the
potential existence of a unique etiological pathway to AUD captured by
the neuropsychological mechanism delineated in the ISST. Rather, we
intend to provide an initial and illustrative survey of that body of evi-
dence. The relevance of ISS as a neuropsychological mechanism in AUD
could be inferred from its inclusion as an addiction-promotive process
in the binge/intoxication and preoccupation stages of the Three Stages
of the Addiction Cycle model (Koob and Volkow, 2010). However, to
our knowledge, there have been no prior reviews of ISS as a mechanism
in AUD; although, the idea is not new (Heinz, 2002). All previous re-
views and theoretical papers on ISST have focused on food or other
drug rewards, or when focused on alcohol, cover only preclinical data
(Valyear et al., 2017). Many commonalities are observed across appe-
titive stimuli such as food, drugs of abuse, and sex; nevertheless, there
are important differences in how these different classes of appetitive
stimuli are processed by the brain (Berridge and Kringelbach, 2015;
Sescousse et al., 2013). Furthermore, the unique pharmacology of dif-
ferent drugs of abuse means that they are not interchangeable “addic-
tive” stimuli (Badiani et al., 2011; Ozburn et al., 2015); it is thus im-
portant to establish a case for the plausibility of the ISST with respect to
the specific drug of abuse.

The evidence we review here spans multiple units of analysis in
humans and non-human animal models. The reader should not infer
from our omission of any particular, relevant study in this review that
said study is inadmissible as evidence supporting or disconfirming
predictions derived from ISST. That being said, much of the primary
scientific literature reviewed here was discovered using a two-step
procedure. In the first step, we entered search terms as Boolean strings
in Internet search databases (EBSCOhost Academic Search Complete:
MEDLINE, PsycARTICLES, PsycINFO; Google Scholar; PubMed). These
Boolean strings were always composed of [(“alcohol” OR “alcoholic”
OR “ethanol” OR “ethyl alcohol”)] plus other search terms that varied
by the level of analysis and concept (e.g., “adaptation”, “approach”,
“attention”, “incentive”, “reactivity”) as well as whether we were in-
terested in discovering studies involving human participants or non-
human animal models. In the second step, we mined the bibliographies
of any relevant discovered articles for additional hits. Only studies
published in peer-reviewed scientific journals by August 2019 were
included.

Readers familiar with ISST (Berridge and Robinson, 2016, 2003;
Robinson and Berridge, 2001, 2000, 1993) will note the absence of
studies on alcohol-related psychomotor sensitization in the present re-
view. This omission was deliberate. An excellent review on this specific
body of work recently was conducted by others (Nona et al., 2018).

2. The incentive salience (IS) circuitry

2.1. Attribution of IS

Attribution of IS to reward-predictive cues is mediated by the me-
socorticolimbic dopamine system (Saunders et al., 2018), which is
comprised of the ventral tegmental area (VTA) complex and its efferent
projections. The VTA complex is a midbrain structure that includes
neurons in the lateral and posterior aspects of the ventral tegmental
area as well as in the medial aspects of the substantia nigra pars com-
pacta (Yetnikoff et al., 2014). Dopamine release from the VTA complex

1 The incentive salience of alcohol cues has also been proposed as one of the
core domains of neurobiologically-informed clinical assessment for AUD
(Kwako et al., 2016).

2 In terms of the RDoC matrix, the ISST is a framework for understanding how
two of the primary constructs, Approach Motivation and Reward Learning, in
one research domain, the Positive Valence System, might promote addictive
behavior. Of the 39 constructs in the RDoC matrix, 7 were identified as being of
utmost importance for understanding addictive behavior by a recent Delphi
consensus study (Yücel et al., 2019), and of those 7 constructs, 1 was Reward
Learning, and 3 were 3 of the 4 sub-constructs that constitute Approach Mo-
tivation.
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projections modulates on-going activity as well as short- and long-term
plasticity at the synaptic and cellular levels in the projections' target
structures (Calabresi et al., 2007; Greengard et al., 1999; Lisman et al.,
2011; Missale et al., 1998; O’Donnell, 2003; Shen et al., 2008; West and
Grace, 2002). Conservation of the VTA complex circuitry across ver-
tebrates establishes the relevance of behavioral neuroscience work on
IS attribution and ISS in non-human animals to humans (Boyson et al.,
1986; Gaspar et al., 1989; Kubikova et al., 2010; Lavoie et al., 1989;
Perez-Fernandez et al., 2014; Smeets et al., 1986).

2.2. Manifestation (expression) of IS

Detection of a reward-predictive cue may automatically activate
implicit associations (path a-> b in Fig. 1) involving attitudes (i.e.,
evaluations) (Bargh et al., 1992), outcome expectancies, and goals (i.e.,
motivational tendencies) (Bargh et al., 2001). The attribution of IS to a
cue (path c-> d-> e in Fig. 1) may not only reinforce its ability au-
tomatically activate implicit associations in long-term memory (path g
in Fig. 1), but also may amplify the behavioral consequences of implicit
associations (path f in Fig. 1) including nonconscious attentional biases
(Kappenman et al., 2013; Mogg et al., 1997) and nonconscious ap-
proach tendencies (Chen and Bargh, 1999). For example, attribution of
IS to a cue may amplify its ability to impel approach and action, which
may manifest as enhanced evaluative and response planning at the level
of neural processing, covertly as a facilitation or priming of response
channels leading to pre-potent responses or faster response times, and/
or overtly as movement of the individual toward the cue/reward object
and/or engagement with it. These skeletomotor manifestations of IS
attribution (path f-> f.1 in Fig. 1) are mediated by an evolutionarily
conserved expression circuitry anchored at the nucleus accumbens, a
component of the subcortical structure known as the ventral striatum in
the rostral forebrain that is situated to integrate diverse functional input
from the amygdalar nuclei, cortices, hippocampus, hypothalamus, and
thalamus with the IS signal from the VTA complex and to engage the
appropriate response systems via the basal ganglia (Cho et al., 2013;
Groenewegen et al., 1999; Haber, 2003; Haber et al., 2000; Hasue and
Shammah-Lagnado, 2002; Parent and Hazrati, 1995; Reynolds and
Zahm, 2005; Zahm et al., 1999).

Similarly, attribution of IS to a cue may amplify its ability to capture
attention, and this may manifest as enhanced attention at the level of
neural processing, an overt orienting response that turns the individual
toward the cue/reward object and/or increases visual gaze shifts or
fixation on it, and/or a covert orienting response that involves co-
ordinated changes in autonomic physiology. These attentional mani-
festations of IS attribution (path f-> f.2 in Fig. 1) are mediated by an

evolutionarily conserved expression circuitry anchored at the central
nucleus of the amygdala, a subcortical structure in the temporal lobe
that is situated to integrate diverse functional input from the cortices,
hypothalamus, other amygdalar nuclei, thalamus, and brainstem with
the IS signal from the VTA complex, and to engage the appropriate
systems in the hypothalamus and brainstem (El-Amamy and Holland,
2007, 2006; Hasue and Shammah-Lagnado, 2002; Lee et al., 2011;
Veening et al., 1984; Zahm et al., 1999).

The constellation of endocrine, skeletomotor, and visceromotor IS
manifestations may constitute a subconscious biobehavioral appetitive-
motivational state of “wanting” (path h in Fig. 1). In non-human ani-
mals, the cue-triggered “wanting” state is theorized be responsible for
the ability of reward-related cues to invigorate actions that are instru-
mental to seeking or consuming the reward as well as to sustain reward
seeking actions in spite of reward omission, punishment, increases in
the effort required, or changes to the form the action must take. Given
that both IS attribution and expression systems are highly conserved
across species, we and others believe that cue-triggered “wanting” is
also likely to be conserved across species. Thus, cue-triggered
“wanting” may make a person more inclined to act toward the im-
plicitly activated goal, which is to obtain the reward predicted by the
cue, and more able to adjust their goal-directed actions according to
situational demands.

Some readers may be satisfied to stop here given that much of be-
havior in humans and non-human animals alike is likely governed by
bottom-up, implicit cognitive processes that operate below conscious
awareness (Bargh, 2016, 2008; Bargh and Ferguson, 2000; Bargh and
Morsella, 2008; Custers and Aarts, 2010; Lewicki et al., 1992). Never-
theless, the subjective experience of desire and craving (at the level of
consciousness) is an important phenomenon in humans, and especially
relevant to addiction and the ISST. In keeping, human neuroimaging
studies of alcohol cue reactivity (reviewed later in Section 4.2.2) tend to
find a significant, positive relationship between the level of activation
induced by alcohol cues in a person’s IS system and that person’s self-
report of the intensity of desire or craving for alcohol induced by those
cues ((Filbey et al., 2008; Fryer et al., 2013; Myrick et al., 2004; Oberlin
et al., 2016; Schacht et al., 2013; Tapert et al., 2004; Wiers et al.,
2015c); but see: (Ames et al., 2014b; Grüsser et al., 2004; Kim et al.,
2014)). Thus, we next propose two ways by which alcohol-associated
cue activation of the IS system may drive the emergence of the sub-
jective experience of alcohol-related desire and thought in humans.

According to the Dynamical Model of Desire (Hofmann and Van
Dillen, 2018, 2012), which expands on the Elaborated Intrusion Theory
of Desire (Kavanagh et al., 2005), subjective experience of a desire for
the reward predicted by some cue emerges in a person’s consciousness

Fig. 1. The incentive salience (IS) attribution and expression system: a simplified schematic. “S” refers to an exteroceptive or interoceptive stimulus. “CS” and “UCS”
refer to the Pavlovian conditional stimulus (cue) and unconditional stimulus (reward), respectively. Inspired by Fig. 2 in Robinson and Berridge (1993).
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(enters working memory) when neural representations of the cue or the
reward or their association capture (neural) attentional resources in
excess of some threshold. Below that threshold, a cue can only affect the
person’s behavioral output via bottom-up, implicit mechanisms (e.g.,
“wanting”). Thus, it is possible that cue-triggered “wanting” becomes
conscious craving when the nonconscious, implicitly-activated beha-
vioral tendencies entailed in “wanting” are interrupted (path h-> i in
Fig. 1) because behavioral conflict quickly captures attentional re-
sources (see: Braver, 2012; Saunders et al., 2017; Yeung et al., 2004). In
the case of alcohol, this “indirect” pathway to conscious craving may be
at work when something impedes successful completion of cue-trig-
gered alcohol seeking (e.g., driving or walking by liquor store, but not
going in to make a purchase; reaching for a glass, but finding that it has
been taken away or that it is empty). It is in these moments that a
person may not only become aware of the nonconscious alcohol seeking
behaviors that were interrupted, but also of the altered physiological
state in which they find themselves, and conclude that they are (or
were) experiencing an urge to drink alcohol (Tiffany and Conklin,
2000).

A “direct” pathway from cue detection and IS attribution to the
subjective experience of desire or craving may also exist (path j in
Fig. 1). Detection of a reward-predictive cue may activate, in parallel to
implicit associations, explicit associations in long-term memory, which
immediately enter working memory, and thereby bring into con-
sciousness cue- or reward-related attitudes, expectancies, goals, and
other thoughts. Attribution of IS to the representation of the cue in
working memory may increase the likelihood that cue-elicited thoughts
capture the focus of attention in consciousness. When the reward in
question is alcohol, the “direct” pathway may be at work when a person
begins to think about alcoholic beverages, alcohol use, or positive al-
cohol use outcomes after briefly encountering an alcohol-associated
exteroceptive cue in the course of daily life.

3. Evidence for ethanol-induced adaptation of the IS circuitry

According to Robinson and Berridge (1993, 2001), the core criteria
for establishing that a drug is able to induce ISS are simple: first, the
drug must engage the IS system, and second, its repeated administration
should induce sensitization, a non-associative learning process, in the IS
system (at the neurobiological level) in a gradual or incremental
manner. Inquiry into the neurobiological substrates of sensitization in
general, and substance-induced sensitization of the IS system in spe-
cific, is an active area of research in neuroscience (e.g., (Areal et al.,
2019; Hersman et al., 2019; Stevenson et al., 2019; Weber et al.,
2019)). However, some details are clear. The adaptations that mediate
ISS are persistent changes at the cellular (e.g., changes in dendritic
morphology) or inter-cellular level (e.g., changes in pre- and post-sy-
naptic molecular elements such as voltage-gated ion channels, iono-
tropic neurotransmitter receptor proteins, neurotransmitter synthesis
enzymes and transporter proteins, metabotropic neurotransmitter re-
ceptor proteins) that necessarily require changes in gene expression.3

Persistent functional cellular adaptations (e.g., increased intrinsic ex-
citability, increased neurotransmitter release) entail persistent circuit-
level adaptations (e.g., increased excitatory tone, decreased inhibitory
tone), which in turn, entail persistent system-level adaptations.4 De-
spite all of this, the consequences of a sensitized IS system may only be

expressed or manifest in behavior in specific contexts (Leyton, 2007;
Vezina and Leyton, 2009). Under certain circumstances, cue- or con-
text-conditioned compensatory (opponent) processes that mediate be-
havioral tolerance to the effects drugs (e.g., (Weise-Kelly and Siegel,
2001)) may mask the expression of sensitized in cue-conditioned ap-
petitive responses (e.g., (Dalia et al., 1998)).

Consequently, an important issue in establishing ISS as a potential
mechanism in AUD is the ability of ethanol exposure to induce persis-
tent adaptations in the IS circuitry, especially adaptations that might
underlie non-associative sensitization of the IS system, particularly its
functional response to alcohol-associated cues. In this section, we re-
view evidence for adaptations in the IS circuitry of preclinical non-
human animal models with ethanol experience that may mediate al-
cohol cue ISS (Fig. 2) in both humans and other animals.

In considering this evidence, it is necessary to keep in mind the
intensity, frequency, and duration of ethanol exposure. In models in-
volving chronic high-intensity exposure, it is necessary to consider
when biological or physiological measurements are made relative to the
last exposure, because these exposure paradigms are able to induce
dependence, as evidenced by signs of acute withdrawal during the first
few days after cessation (e.g., lowered seizure threshold, anxiety-like
phenotypes) (Macey et al., 1996; Majchrowicz, 1975). Ideally, mea-
surements would be made at various intervals post-cessation. However,
the vast majority of studies make measurements only during acute
withdrawal. Although studies describing the brain state in acute with-
drawal are important (e.g., this state may be conducive to deeper en-
coding of cue-alcohol associations via increased homeostatic value of
alcohol or negative reinforcement), ISST assumes that the sensitized
response to cues is not constrained to instances of acute withdrawal. In
fact, there may be an exposure threshold for ethanol-induced adapta-
tion in different brain and body systems found to be altered in people
with AUD. Assuming that this threshold is met, adaptations should
begin to arise in the IS circuitry early in the exposure history. Later in
the exposure history, the adaptations that mediate ISS should persist
after instances of acute withdrawal. For this reason, we review pre-
clinical non-human animal model studies making measurements any
time after limited (low-intensity) exposure and at two different time-
points after extensive (high-intensity) exposure: during acute with-
drawal and at least a week after it has resolved. Finally, we comment on
the role of intermittency in ethanol exposure.

3.1. Precursor for alcohol cue incentive salience sensitization (ISS)

The earliest ethanol-induced adaptation in the IS circuit is the de-
velopment of phasic5 dopamine release to ethanol-predictive cues
(henceforth: the IS signal), which is necessary for initiation of pro-
gressive alcohol cue ISS. We know that outside a self-administration
context, i.e., as a purely pharmacological stimulus divorced of its usual
motivational significance, ethanol can induce dopamine release in both
the prefrontal cortex and nucleus accumbens of people (Boileau et al.,
2003; Setiawan et al., 2014; Urban et al., 2010; Yoder et al., 2016,
2007) and rodents alike (Di Chiara and Imperato, 1988; Howard et al.,
2008; Imperato and Di Chiara, 1986; Schier et al., 2013; Yim and
Gonzales, 2000; Zapata et al., 2006). This occurs putatively as a func-
tion of ethanol’s acute pharmacological effects on cells in the VTA
complex (Brodie et al., 1999, 1990; Brodie and Appel, 1998; di Volo

3 A comprehensive survey of all the genes and molecules that preclinical re-
search on non-human animal models has demonstrated can change as a func-
tion of drug exposure, as a function of associative and non-associative learning,
and/or as a function of their interaction, is beyond the scope of this review.
Suffice it to say that the list of genes is long and ever-growing.

4 An appreciation for the coordinated nature of functional adaptation across
levels of biological organization (e.g., how changes in different molecules can
produce changes synaptic plasticity processes) may be garnered from in-
novative simulation studies such as (Blackwell et al., 2018).

5 Phasic refers to event-locked dopamine release on a sub-second timescale
due to synchronized bursts of high-frequency action potentials (AP) at axon-
terminal boutons, and is contrasted with tonic release due to asynchronous low-
frequency AP at the same. Tonic release creates the “basal tone” (steady-state
extracellular concentration) that regulates clearance mechanisms (e.g., auto-
receptors, transporters, degradative enzymes) in the terminal field. Readers
desiring more in-depth coverage of the dopamine neurotransmission system are
referred to: (Grace, 2000; Marinelli and McCutcheon, 2014; Rice et al., 2011;
Vallone et al., 2000).
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et al., 2018; Gessa et al., 1985; Mereu et al., 1984; Xiao et al., 2009).
However, over the course of repeated voluntary oral self-adminis-

tration by ethanol-experienced non-human animals, explicitly or in-
cidentally-conditioned cues, such as a light or a lever or the flavor of
alcohol, acquire the ability to trigger dopamine release in the medial
prefrontal cortex and the nucleus accumbens before brain ethanol
concentrations reach pharmacologically active levels (Bassareo et al.,
2017; Carrillo and Gonzales, 2011; Doherty et al., 2016; Doyon et al.,
2005, 2003; Fiorenza et al., 2018; Howard et al., 2009; Shnitko and
Robinson, 2015). In the same studies, dopamine levels remain either
slightly elevated or return to baseline as brain ethanol concentrations
continue to rise. This pattern suggests that one of the early adaptations
to chronic ethanol experience in its typical motivational context is a
decrease in or loss of VTA complex dopamine neuron sensitivity to the
pharmacological effects of ethanol (putatively the rewarding stimulus)
and acquisition of VTA complex dopamine neuron sensitivity to
ethanol-predictive stimuli (the reward-predictive cues). Interestingly,
the same pattern of changes in the IS attributor has been documented as
arising in 1/3rd of rodents (so-called “sign-trackers”) when they are
trained to predict natural reward (food) on the basis of a cue (Flagel
et al., 2010). If we accept that the function of the IS attributor is to
broadcast whether specific stimuli are “want worthy,” then the devel-
opment of any CS-elicited activity in the IS attributor (i.e., rapid release
of dopamine from axon terminal buttons; with or without loss of the US-
elicited activity) represents the first step in the process of alcohol cue
ISS (formation of type ‘a’ path in Fig. 2).

3.2. ISS-mediating adaptations arising early in the alcohol use history

Limited (low-intensity) exposure to ethanol is also able to induce
adaptations in the IS circuitry that have the functional consequence of
increasing the neurobiological (and psychological) relevance of the IS
signal. A week of voluntary oral self-administration of moderate
ethanol doses (ethanol concentration ≈50mg/dL whole blood 30min
into the drinking episode) appears to be sufficient to decrease basal
extracellular dopamine tone in the prefrontal cortex (Doherty et al.,
2016) of rats from a genetically heterogeneous population, whereas
longer (e.g., 2 months) voluntary oral self-administration histories may
be necessary for similar adaptations to arise in the nucleus accumbens
(Doyon et al., 2003; Ericson et al., 2019; Howard et al., 2009). These
longer histories can also alter the balance of excitatory and inhibitory
drive into the dorsal striatum, the nucleus accumbens, and the orbito-
frontal cortex depending on the intensity of alcohol consumption
(Adermark et al., 2013; Lagström et al., 2019). The functional con-
sequence of lower basal dopamine tone in either the prefrontal cortex
or the nucleus accumbens may be an elevated signal-to-noise ratio in
cortical and striatal neurons (Kroener et al., 2009; O’Donnell, 2003;
West and Grace, 2002) due to lower tonic dopamine auto-receptor ac-
tivation (Dreyer et al., 2010). An elevated signal-to-noise ratio would
have consequences for the neuromodulatory impact of phasic dopamine
release on synaptic activity and plasticity as well as excitatory and in-
hibitory drive onto those synapses in the IS expressors (changes in the

type ‘b’ paths or their targets in Fig. 2).
A short history of voluntary oral alcohol self-administration in rats

from genetically homogenous populations selected for high alcohol
preference is also able to increase the number of spontaneously active
dopamine neurons in the VTA complex (Morzorati et al., 2010). This
suggests that in at least some individuals limited exposure to alcohol
can cause a persistent increase in the intrinsic excitability of the IS
attributor (which may make it easier for activity in type ‘a’ paths to
drive the IS attributor, i.e., to activate type ‘b’ paths in Fig. 2). Inter-
estingly, alcohol-naive rats from these more genetically homogeneous
populations selected for high alcohol preference and drinking also tend
to have lower basal dopamine tone in both the prefrontal cortex and the
nucleus accumbens (Engleman et al., 2006; Gongwer et al., 1989;
Katner and Weiss, 2006; McBride et al., 1993; Murphy et al., 1982;
Quintanilla et al., 2007; Strother et al., 2005), suggesting that selection
for high alcohol preference/drinking also selects for neurobiological
endophenotypes that may increase vulnerability to alcohol cue ISS.

3.3. ISS-mediating adaptations arising later in the alcohol use history

3.3.1. Adaptations active in acute withdrawal
Depending on alcohol use level and history, abstinence from alcohol

can produce an acute withdrawal syndrome, the physical symptoms
(e.g., seizures, tremors) of which can begin hours after the last drink yet
abate within a few days and the psychological symptoms (e.g., anxiety,
depression, trouble sleeping) of which can persist for at least two weeks
(Brown et al., 1995; Brown and Schuckit, 1988; Liappas et al., 2002;
Schuckit et al., 2015, 1995). During acute withdrawal, cognitive func-
tioning may be especially impaired ((Beatty et al., 2000; Czapla et al.,
2016; Loeber et al., 2010; Pitel et al., 2009; Romero-Martínez et al.,
2018); for review see: (Bates et al., 2002)) yet alcohol use-directed
motivation may be heightened since non-cued craving is at its peak
((Flannery et al., 2003; Martinotti et al., 2008; Schneekloth et al., 2012;
Witkiewitz, 2013); but see: (Li et al., 2015)). In non-human animal
models, acute withdrawal after extensive (high-intensity) exposure to
ethanol is associated with lower basal dopamine tone and greater basal
glutamate tone in the nucleus accumbens (Griffin et al., 2015; Hirth
et al., 2016; Karkhanis et al., 2015; Uys et al., 2016; Weiss et al., 1996),
altered synaptic plasticity in the nucleus accumbens (Jeanes et al.,
2011; Renteria et al., 2017b; Spiga et al., 2014), greater excitability in
the medial and orbital prefrontal cortices ((Nimitvilai et al., 2016; Pleil
et al., 2015), but see: (Renteria et al., 2018)), and altered excitatory
drive and synaptic excitability as well as altered phasic and tonic in-
hibition in the central and basolateral nuclei of the amygdala (Herman
and Roberto, 2016; Läck et al., 2007, 2005; Lindemeyer et al., 2014;
Papadeas et al., 2001; Pleil et al., 2015; Roberto et al., 2004a, 2004b;
Varodayan et al., 2016). In the amygdala, hippocampus, and nucleus
accumbens, the number of brain cells activated during the experience of
acute withdrawal grows as a function of the number of previous
withdrawal episodes (Borlikova et al., 2006), suggesting that repeated
cycles of high intensity exposure and acute withdrawal alter the bal-
ance of excitation and inhibition in these structures and induce

Fig. 2. Paths mediating incentive salience (IS) sensitization (ISS). Components: memory systems, IS attributor, IS expressors, response effector systems. A-type paths:
input from memory systems into the IS attributor. B-type paths: IS attributor output to the IS expressors. C-type paths: IS expressors output to response effector
systems that are responsible for manifestations of IS in behavioral output across levels of biological organization. The vulnerability of the different paths and IS
system components to the adaptations mediating alcohol cue ISS is theorized to increase progressively over the alcohol use history as a function of the frequency,
intensity, and pattern of drinking. A 3-color gradient (blue to purple to red) is used to represent an increasing extent or number of adaptations accrued within each
component or path. Adaptations may occur in one component or path without occurring in another and the accrual rate may vary by component or path.
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persistent functional alterations. Finally, although the neurobiology of
acute withdrawal from alcohol is primarily informed by post-mortem
studies in the mouse and rat brain, a similar neurobiological state, at
least in the nucleus accumbens and prefrontal cortices, can be inferred
from post-mortem studies in the brains of non-human primates allowed
to voluntarily orally self-administer alcohol to intoxication every day
for 6 or more months (Acosta et al., 2010; Alexander et al., 2012; Floyd
et al., 2004; Hemby et al., 2006; Siciliano et al., 2016a, 2016b, 2015).
The functional consequence of these adaptations may be elevated re-
activity to alcohol-associated cues in cortical neurons, dysregulated
reactivity in amygdalar neurons, and an elevated signal-to-noise ratio in
striatal neurons (Kroener et al., 2009; O’Donnell, 2003; West and Grace,
2002) due to lower tonic dopamine auto-receptor activation (Dreyer
et al., 2010) that enhances the neuromodulatory impact of event-re-
lated dopamine release on synaptic activity and plasticity as well as the
thresholds for excitatory and inhibitory drive onto said synapses in the
IS expressors (changes in the type ‘b’ paths or their targets in Fig. 2).
Thus, the brain state in acute withdrawal after chronic high intensity
exposure appears to be one that may support sensitized responses to
alcohol cues (i.e., amplifies or facilitates the impact of alcohol-asso-
ciated cues on behavioral output) as well as deeper conditioning of
those cues if reinforced with alcohol ingestion and/or intoxication.

3.3.2. Adaptations that persist into protracted abstinence/withdrawal
Although physical symptoms of withdrawal from alcohol may abate

within days, the psychological symptoms such as anxiety and depres-
sion can persist, and may be present in some people up to a year after
the last drink (Martinotti et al., 2008). Although cognitive functioning
may recover over the periods of months to years of protracted ab-
stinence from alcohol ((Beatty et al., 2000; Czapla et al., 2016; Loeber
et al., 2010; Pitel et al., 2009; Romero-Martínez et al., 2018), for review
see: (Bates et al., 2002)), alcohol use-directed motivation may remain
aberrantly elevated, as evidenced by incubation of alcohol cue-induced
conscious craving (Li et al., 2015), even if it is not actively expressed in
behavior. During protracted abstinence/withdrawal, some, but not all,
components of the IS circuitry appear to have a lower threshold for
activation. Specifically, non-human animals exhibit elevated basal
glutamate tone (Griffin et al., 2014), increased intrinsic excitability,
increased excitability at glutamatergic synapses, and altered synaptic
plasticity (Marty and Spigelman, 2012; Renteria et al., 2017a; Zhou
et al., 2007), but see: (Adermark et al., 2013)) as well as altered as-
trocytic excitability (Bull et al., 2014) in the nucleus accumbens. Basal
dopamine tone in the nucleus accumbens is found to be either increased
(Hirth et al., 2016) or decreased (Kashem et al., 2012; Rothblat et al.,
2001) or unchanged (Diana et al., 1992), potentially as a function of the
exposure paradigm and its ability to induce changes in local dopamine
receptor gene expression and/or its regulation (Eravci et al., 1997;
Jonsson et al., 2014). In the medial and orbital prefrontal cortices,
synaptic excitability, synaptic plasticity, and its biochemical mediators
are perturbed (Henniger et al., 2003; Kroener et al., 2012; Renteria
et al., 2018). In the central nucleus of the amygdala, altered tonic in-
hibition persists due changes in the local expression or regulation of
inhibitory neurotransmitter clearance mechanisms (Augier et al.,
2018). Finally, dopamine neurons in the VTA complex do not appear to
exhibit increased baseline spontaneous firing rates (Diana et al., 1992),
but do bear biochemical and electrophysiological signatures of en-
hanced responsivity to excitatory neurotransmission at synapses along
their dendrites (Ortiz et al., 1995; Stuber et al., 2008). Overall, even in
the absence of the lower signal-to-noise ratio in the nucleus accumbens
observed after acute withdrawal, other nodes of the IS circuitry appear
to be more easily driven by alcohol-associated cues in protracted ab-
stinence (changes in the type ‘c’ paths in Fig. 2). Importantly, the
available evidence suggests that long-term ethanol exposure induces
adaptations that persist after acute withdrawal into protracted ab-
stinence. Moreover, these ethanol-induced adaptations may support the
ability of alcohol-associated cues to affect behavioral output despite

non-reinforcement of said cues in protracted abstinence.

3.3.3. On the role of intermittency in the effects of chronic ethanol exposure
Many of the neuroadaptations evident in the acute and protracted

withdrawal states after extensive (high-intensity) ethanol exposure that
were reported above may hinge upon the intermittency built into many
ethanol access/exposure paradigms (e.g., multiple cycles of a 4-day 16-
hr/day passive ethanol vapor exposure, every other day 24-hr access or
daily 2-hr access schedules). In rodents, these chronic intermittent ac-
cess/exposure paradigms can induce alcohol addiction-like behavioral
phenotypes including: increased alcohol seeking (Augier et al., 2018;
Ciccocioppo et al., 2003; Gass et al., 2014; Hauser et al., 2019;
Meinhardt et al., 2013; Vendruscolo et al., 2012), development of
within-episode drinking patterns that rapidly produce high blood al-
cohol concentrations (Gilpin et al., 2009; Wilcox et al., 2014), and
heavier consumption across episodes (Becker and Lopez, 2004; Bell
et al., 2004; Loi et al., 2010; Morales et al., 2015; Simms et al., 2008;
Sommer et al., 2008; Wilcox et al., 2014; Wise, 1973) as well as relative
insensitivity of alcohol seeking and drinking to alcohol devaluation
(Augier et al., 2018; Hopf et al., 2010; Loi et al., 2010; Vendruscolo
et al., 2012). Furthermore, rodents that undergo chronic intermittent
ethanol access/exposure paradigms exhibit short- and long-term defi-
cits in performance on executive functioning tasks (Gass et al., 2014;
Kroener et al., 2012) as well as in learning about aversive, but not
appetitive, outcomes (Ripley et al., 2004, 2003; Stephens et al., 2005,
2001). Thus, repeated cycles of intoxication and abstinence may be a
critical factor in the progressive loss of control over alcohol use.

3.4. Interim summary 1

In this section, we reviewed evidence for the ability of ethanol, the
addictive agent in alcoholic beverages, to induce neuroadaptations that
may mediate the ISS process. The evidence, which comes from work in
non-human animal models, suggests that several different adaptations
capable of mediating the ISS process arise as a function of chronic
ethanol exposure (see Fig. 3) in the IS attributor, VTA complex, and the
IS expressor systems, amygdala and nucleus accumbens, as well as in
the medial and orbital prefrontal cortices, which are innervated by the
IS attributor and inter-connected with the IS expressor systems. Given
that these prefrontal cortices are believed to mediate cognitive control
processes (Barbas, 2000; Braver, 2012; Inzlicht et al., 2015;
Ridderinkhof, 2004), complex higher-level psychological functions in
humans such as emotion regulation and self-control (Ochsner et al.,
2012; Robinson et al., 2010) may be vulnerable to dysregulation as ISS
progresses.

4. Evidence for incentive salience (IS) attribution to alcohol cues
and its sensitization (ISS)

Based on the behavioral indicators of IS attribution described in
(Robinson et al., 2014), if an alcohol-associated cue has been attributed
with IS, then: (1) that cue should be able to elicit approach-oriented
responses (e.g., attention, approach, conscious craving for alcohol), (2)
that cue should be able to serve as a conditional or secondary re-
inforcer,6 and (3) that cue should be able to induce or invigorate

6 Conditional or secondary reinforcers are stimuli that support new learning
and/or behavioral performance as a function of their learned, meaningful re-
lationship to a primary reinforcer such as resources necessary for survival.
When learned cues acquire conditional reinforcing properties, they can moti-
vate behavior in the absence of primary reinforcement and sometimes even in
the face of punishment. The most commonly cited “real world” example of a
secondary reinforcer is token money. In some societies, token money is able to
motivate some individuals to learn and perform new actions, often vigorously
and repeatedly, for long stretches of time. The value of token money to a person
in such societies is conditional upon learning about the extent to which and
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instrumental alcohol seeking actions (e.g., choice, consumption). At the
brain-level, the IS-attributed alcohol-associated cue should engage the
IS circuitry, i.e., activate the IS attributor and/or expressors (Fig. 1).

Applying ISST to AUD, all else being equal, if ISS is a mechanism in
AUD, then it holds that an individual’s degree of reactivity to alcohol-
associated cues should covary with alcohol use levels. There should be a
positive relationship between alcohol consumption or exposure and
degrees of reactivity. Consequently, with more exposure: (1) the IS-
imbued alcohol-predictive cue should be able to elicit greater levels of
alcohol seeking reactions (e.g., attention, approach, conscious craving
for alcohol), (2) the cue should have higher conditional rewarding
value, and (3) the cue should more easily induce or invigorate instru-
mental alcohol seeking actions (e.g., choice, consumption). Finally, (4)
a similar pattern of sensitization should be evident in brain-level re-
sponses to the cue. However, all else may not be equal, and it rarely is.
It is important to keep in mind that the reliability of the predicted
positive association between alcohol use and cue reactivity level in
humans is likely to be low because alcohol use level is subject to the
influence of many different trait and state factors at the psychological,
social, and cultural levels.

4.1. In non-human animal models

In this section, we review evidence for attribution of IS to alcohol-
predictive cues and its sensitization in non-human animal models.

4.1.1. Alcohol cue-related behavioral responses
4.1.1.1. Attentional responses. In discrete alcohol cue conditioning
paradigms involving voluntary oral alcohol self-administration by
rats, the alcohol-predictive cue can come to elicit an attentional
orienting response (Cofresí et al., 2019a, 2019b). However, it remains
to be seen whether individual differences in pre-conditioning voluntary
alcohol consumption predict conditioned attentional response levels or
whether the latter relate to alcohol self-administration in the
conditioning task.

4.1.1.2. Approach responses. In the same type of paradigm where
alcohol-related attentional responses can be seen in rats, the alcohol-
associated discrete cue can also come to elicit an approach response
(Cofresí et al., 2019a, 2019b, 2018; Krank, 2003; Krank et al., 2008;
Sparks et al., 2014; Srey et al., 2015; Villaruel and Chaudhri, 2016). In
keeping with what we might expect from applying ISST to AUD
phenotypes, individual differences in pre-conditioning task voluntary
alcohol consumption can predict later alcohol cue-conditioned
approach levels (Cofresí et al., 2019a). Furthermore, rats with greater
magnitude alcohol cue-conditioned approach response also self-
administer more alcohol in the cue conditioning paradigm (Cofresí
et al., 2019b, 2018). Similarly, alcohol-associated contextual cues, such
as distinct places paired with experimenter-administered alcohol, can
come to elicit place preference, an approach-like response, in mice
(Cunningham et al., 2002a, 2002b; Gremel and Cunningham, 2008)
and rats (Bozarth, 1990; Nentwig et al., 2017; Torres et al., 2014).
Furthermore, there is a positive association between levels of this
approach-like response and levels of voluntary alcohol consumption in
rodents (Green and Grahame, 2008).

4.1.1.3. Cue as conditional reinforcer effects. Alcohol-associated cues
alone can reinforce learning of new instrumental actions in rats
(Milton et al., 2012; Schramm et al., 2016; Srey et al., 2015).
Alcohol-associated cues and contexts are also able to cause the return
of extinguished instrumental actions that previously produced alcohol
and maintain that instrumental responding for some time in the absence
of alcohol (Bertholomey et al., 2016; Bienkowski et al., 2004; Burattini
et al., 2006; Chaudhri and Sahuque, 2008; Ciccocioppo et al., 2002,
2001; Dayas et al., 2007; Hauser et al., 2019, 2016; Jupp et al., 2011;
Katner et al., 1999; Katner and Weiss, 1999; Knight et al., 2016; Martin-
Fardon and Weiss, 2017; O’Brien et al., 2011; Radwanska et al., 2008;
Randall et al., 2017; Rodd-Henricks et al., 2003, 2002; Zironi et al.,
2006).

Evidence for sensitization of conditioned reinforcement comes from
studies in rats demonstrating changes in the magnitude of conditioned
reinforcement-related effects following termination of access or ex-
posure to alcohol. In the hours to days following termination of access/
exposure, alcohol dependent rats will: (1) work harder for alcohol
(Gilpin et al., 2009; Gilpin and Koob, 2010; Kissler and Walker, 2015;
Roberts et al., 1996; Vendruscolo et al., 2012; Walker and Koob, 2007),
(2) self-administer more (Weiss et al., 1996), even if it has been
adulterated with bitterant (Vendruscolo et al., 2012), and (3) exhibit
larger alcohol-associated cue- and context-induced instrumental re-
sponse reinstatement effects (Ciccocioppo et al., 2003; Liu and Weiss,
2002a; Weiss et al., 1996). As time post-termination of access/exposure
increases from days to weeks or months, alcohol-associated cue- and
context-induced instrumental response reinstatement effects can be
observed to grow in magnitude ((Bienkowski et al., 2004; Hauser et al.,
2019, 2016; Radwanska et al., 2008; Rodd-Henricks et al., 2003, 2002),
but see: (Jupp et al., 2011; O’Brien et al., 2011)).This incubation effect
is in agreement with known time-dependent increase in the magnitude

Fig. 3. Example of the kinds of persistent adaptations ethanol (EtOH) exposure
might induce over time (t) to mediate alcohol cue ISS and how these might
unfold over exposure relative to one another. Conjecture is informed by find-
ings reviewed in the main text. Increased phasic DA release (from synchronized
high-frequency action potentials at terminal boutons arising from the IS attri-
butor) must occur at synapses involved in maintaining memory for the alcohol
cue or its expression (viz., synapses in memory systems or in the IS expressors).
Increased excitatory drive may occur at specific synapses across the IS system
components including at the IS attributor. Decreased tonic DA release (from
asynchronous low-frequency action potentials at terminal boutons arising from
the IS attributor) will naturally affect many more synapses than those im-
mediately involved in alcohol cue memory/expression. Increased excitatory
tone, decreased inhibitory tone, and increased intrinsic excitability will natu-
rally affect many cells across the IS system components including at the IS at-
tributor.

(footnote continued)
ways in which token money can be traded for desired and/or needed goods and
services.
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of spontaneous recovery of extinguished reactivity to alcohol-associated
cues (LeCocq et al., 2018; Remedios et al., 2014). From a Pavlovian
perspective, these effects demonstrate acute withdrawal and protracted
abstinence state-dependent increases in IS attribution to alcohol-asso-
ciated cues.

4.1.1.4. Pavlovian to instrumental transfer effects. The Pavlovian to
instrumental transfer (PIT) construct developed in animal models
addresses the ability of incidental exposure to Pavlovian cues to
initiate or invigorate an instrumental action. The formal test for PIT
involves separately training cue reactivity and instrumental action and
then observing behavior during a probe test in which the cue is
intermittently presented to the animal while the opportunity for
instrumental action is concurrently available. Typically, primary
reinforcement is withheld during the test to prevent confounding the
effect of cues with the effect of primary reinforcement. In rats, alcohol-
associated cues can produce PIT test effects that are specific to alcohol
reward as well as PIT test effects that generalize to other rewards
((Alarcón and Delamater, 2018; Corbit et al., 2016; Corbit and Janak,
2016, 2007; Glasner et al., 2005; Krank, 2003; Krank et al., 2008; Lamb
et al., 2016); but see: (Lamb et al., 2019, 2016)). Interestingly, alcohol-
associated cues do not appear to exert any stronger PIT test effect in rats
with a history of physical ethanol dependence than rats without such a
history (Glasner et al., 2005). However, in rats without any history of
physical dependence, alcohol cues exert a stronger PIT test effect after
extensive as opposed to limited voluntary oral self-administration
histories ((Corbit and Janak, 2016), but see: (Lamb et al., 2019)).

If we accept that drinking alcohol is itself an action instrumental for
the experience of alcohol’s primary reinforcing properties, then we can
admit as evidence of PIT in non-human animal models those situations
in which conditioned alcohol cue reactivity facilitates alcohol drinking
behavior (e.g., initiation of a sip, faster sipping, larger sips). Such PIT-
like effects have been observed in rats (Cofresí et al., 2019b, 2018).
Here, there is a positive relationship between the degree of Pavlovian
alcohol cue reactivity and the speed and intensity of alcohol drinking
behavior (Cofresí et al., 2019b, 2018).

4.1.2. Alcohol cue-related brain responses
4.1.2.1. Immediate early gene expression. When neurons and astrocytes
are activated, the transcription and translation of immediate early
genes (e.g., arc, c-fos, erk) occurs, and this allows researchers to use the
relative density of transcripts or translated protein product as an index
of regional brain activity (typically, post-mortem) (Herdegen and Leah,
1998; Morgan and Curran, 1989; Sheng and Greenberg, 1990). Using
these indices, alcohol cues conditioned by voluntary oral alcohol self-
administration have been shown to activate cells in various IS circuit
nodes in the rat brain, including the medial and orbital prefrontal
cortices, insular cortex, basolateral nucleus of the amygdala, nucleus
accumbens, and central nucleus of the amygdala (Barak et al., 2013;
Cofresí et al., 2019a; Dayas et al., 2007; Jupp et al., 2011; Radwanska
et al., 2008).

These alcohol cues appear gain incentive salience as a function of
time since acute withdrawal from alcohol. Specifically, after 6 months
since cessation of alcohol access compared to after only 1 month, al-
cohol cues were able to induce activation of more cells in IS circuit
nodes including the medial and orbital prefrontal cortices and central
nucleus of the amygdala (Jupp et al., 2011). Other IS circuit nodes (e.g.,
nucleus accumbens, basolateral nucleus of the amygdala) also exhibited
cue-induced activation, but the number of activated cells did not scale
with time post-cessation of alcohol access. To our knowledge, no studies
have looked at whether alcohol cues activate more cells in these brain
regions as a function of alcohol exposure levels per se.

4.1.2.2. Dopamine neurotransmission. Changes in phasic and tonic
dopamine release, which differentially affect signaling via different
post-synaptic dopamine receptors (Dreyer et al., 2010; Venton et al.,

2003), can be measured using fast-scan cyclic voltammetry (Rodeberg
et al., 2017) and microdialysis (Zapata et al., 2009), respectively, in
awake, freely-behaving non-human animals. Using these two
neurochemical monitoring techniques, alcohol-associated cues have
been demonstrated to elicit increases in both phasic and tonic
dopamine release at IS circuit nodes such as the prefrontal cortices
and nucleus accumbens in the rat (Bassareo et al., 2017; Carrillo and
Gonzales, 2011; Doherty et al., 2016; Doyon et al., 2005, 2003;
Fiorenza et al., 2018; Gonzales and Weiss, 1998; Howard et al., 2009;
Katner and Weiss, 1999; Melendez et al., 2002; Robinson et al., 2009;
Shnitko and Robinson, 2015; Weiss et al., 1993).

We were unable to find any published studies that have set out to
investigate whether alcohol cues elicit greater dopamine release as a
function of alcohol exposure levels. Only one study has looked at
whether alcohol-associated cues elicit greater dopamine release as a
function of time since acute withdrawal due to termination of alcohol
access/exposure. In this single study using microdialysis in rats (Weiss
et al., 1996), when alcohol-dependent rats were allowed to orally self-
administer alcohol a few hours into acute withdrawal, within 10min,
extracellular dopamine levels in the nucleus accumbens reached 200 %
of the baseline extracellular level observed during acute withdrawal.
However, in the same study, the baseline extracellular dopamine level
in the nucleus accumbens was found to be lower during those first few
hours of acute withdrawal than before the induction of physical de-
pendence. Another study from the same group provides indirect evi-
dence for increased cue-elicited dopamine release in the nucleus ac-
cumbens during withdrawal. In this study, the potency and efficacy of
systemically-administered dopamine receptor antagonists to inhibit the
ability of alcohol-associated cue/contexts to reinstate extinguished in-
strumental response rates were found to be greater after a history of
physical dependence (Liu and Weiss, 2002b). Together, these findings
are in keeping with the idea (discussed earlier) that ethanol exposure
induces adaptations that enhance the neuromodulatory impact of do-
pamine in the nucleus accumbens.

4.1.2.3. In vivo neuronal firing. Transient changes in the firing rate of
neurons also can be measured in awake, freely-behaving animals by
implanting electrodes into the brain regions of interest (Woodward
et al., 1999). Alcohol-associated cues have been demonstrated to elicit
changes in the firing rate of neurons in the nucleus accumbens of rats
from genetically heterogeneous populations (Janak et al., 1999;
Robinson and Carelli, 2008; Woodward et al., 1998). In rats from a
genetically homogenous population selected for high alcohol
preference, alcohol-associated cues may also elicit changes in the
firing rate of neurons in the prefrontal cortex (Linsenbardt and
Lapish, 2015). To our knowledge, no studies have looked at whether
alcohol access-related cues induce greater changes in neuronal firing as
a function of alcohol use or exposure levels or as a function of time
since acute withdrawal due to termination of alcohol access or
exposure.

4.2. In humans

In this section, we review evidence for attribution of IS to alcohol-
predictive cues and its sensitization in people.

4.2.1. Alcohol cue-related behavioral responses
4.2.1.1. Attentional responses. In this section, we review the evidence
for attentional capture by alcohol-predictive cues, an index of IS
attribution. Readers interested in the topic of the attentional capture
by cues associated with drugs of abuse (including alcohol) in general,
including alternative theoretical and methodological explanations for
any measured bias in visual attention, its relationship to drug craving,
and its clinical relevance are referred to comprehensive review articles
conducted by others (Christiansen et al., 2015b; Field et al., 2016,
2014; Field and Cox, 2008).
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The best evidence for or against the ability of alcohol cues to elicit
oculomotor behavior (viz., capture visual attention) in humans comes
from studies measuring eye movement initiation, latency, and duration.
In one such study (Monem and Fillmore, 2016), the duration of gazes
toward non-alcoholic beverages decreased across two sessions in a si-
mulated in vivo “recreational” setting whereas the duration of gazes
toward alcoholic beverages in the same setting did not such that in
session 2, an attentional bias toward the alcoholic beverages was visible
at the sample-level. Monem and Fillmore (2016) also found that within-
person differences in gaze duration between alcoholic and non-alco-
holic beverages in both sessions were positively related to typical al-
cohol use levels. Similarly, inside complex visual scenes presented on a
computer screen, alcoholic beverages can elicit a greater number of
cue-directed eye movements and the extent to which they do appears to
be relate to alcohol use levels (Roy-Charland et al., 2017). More eye
movements tend to be directed toward alcohol use scenes when they are
presented alongside other scenes and gaze duration tends to be longer
(Vincke and Vyncke, 2017). Similarly, the duration of gazes toward
alcoholic beverage pictures and words tend to be longer than the
duration of gazes toward concurrently presented non-alcohol pictures
and words and this bias tends to be positively related to typical alcohol
use ((Ceballos et al., 2015; Christiansen et al., 2015a; Fernie et al.,
2012; Field et al., 2011b; Friese et al., 2010; Laude and Fillmore, 2015;
Lee et al., 2014; Melaugh McAteer et al., 2015; Miller and Fillmore,
2011, 2010; Rose et al., 2013; Weafer and Fillmore, 2013, 2012), but
see: (Schoenmakers et al., 2008)).

Additional evidence for or against the ability of alcohol cues to elicit
oculomotor behavior (viz., capture visual attention) in humans comes
from tasks where visual attentional capture by alcohol cues can be in-
ferred based on changes in the accuracy and/or latency of other (non-
ocular) responses to visual stimuli. For example, the ability and latency
to detect alcoholic beverage-related changes within complex visual
scenes as well as simple multi-item display grids in the flicker-induced
visual change blindness paradigm in the laboratory (Hobson et al.,
2013; Jones et al., 2002, 2006, 2003; Schoenmakers et al., 2007) and in
the natural environment (Schoenmakers and Wiers, 2010). The ability
and latency to detect alcohol-related changes in the flicker-induced
change paradigm tend to be, respectively, positively and negatively
related to typical alcohol use levels (Hobson et al., 2013; Jones et al.,
2002, 2006, 2003; Schoenmakers and Wiers, 2010). Similarly, in the
attentional blink paradigm, which measures the efficiency of early vi-
sual attention as a decrease in an experimentally-induced stimulus mis-
identification rate, greater early visual attention efficiency has been
found for both alcoholic beverage pictures and alcohol-related words
relative to non-alcohol pictures and words as a positive function of
typical alcohol use levels (DePalma et al., 2017; Tibboel et al., 2010). In
the modified visual dot probe detection task, an alcoholic beverage
picture and non-alcohol beverage picture are presented simultaneously
on the left or right-side of a computer screen and a response-target
probe is presented shortly after picture offset in the same location as
one of the two pictures on the screen. In this task, the latency to respond
to the probe tends to be shorter (i.e., people are faster to detect it) when
the probe is presented in the same location as the alcoholic beverage
picture and this tends to be positively related to typical alcohol use
levels ((Christiansen et al., 2015a; Clerkin et al., 2016; Duka and
Townshend, 2004; Field et al., 2013, 2007, 2004; Field and Eastwood,
2005; Field and Quigley, 2009; Garland et al., 2012a, 2012c; Manchery
et al., 2017; Miller and Fillmore, 2010; Ramirez et al., 2015b, 2015a;
Roberts and Fillmore, 2015; Schoenmakers et al., 2007; Shin et al.,
2010; Vollstädt-Klein et al., 2012), but see: (Fernie et al., 2012; Field
et al., 2005; Jones et al., 2018; Miller and Fillmore, 2011;
Schoenmakers et al., 2008; Townshend and Duka, 2007; Wiers et al.,
2017)). Additionally, in AUD patients, this measure of attentional
capture by alcohol cues appears to “incubate” (i.e., detection of targets
in alcohol cued locations becomes increasingly faster) across abstinence
(Rinck et al., 2018; Schoenmakers et al., 2010). In the modified color-

naming Stroop interference task with words (Stroop, 1935), partici-
pants tend to be less accurate and/or slower to identify the color when
alcohol-related words are used and this tends to be positively related to
typical alcohol use ((Bauer and Cox, 1998; Cox et al., 2003, 2000, 1999;
Duka et al., 2002; Fadardi and Cox, 2009, 2006; Field et al., 2013;
Grant et al., 2007; Johnsen et al., 1994; Lusher et al., 2004; Modi et al.,
2019; Murphy and Garavan, 2011; Ryan, 2002; Sharma et al., 2001;
Snelleman et al., 2015; Stautz et al., 2017; Stetter et al., 1995, 1994;
Stormark et al., 2000, 1997), but see: (Albery et al., 2015; Christiansen
and Bloor, 2014; Duka and Townshend, 2004; Fridrici et al., 2013;
Spanakis et al., 2019)) and may “incubate” with repeated cycles of
withdrawal (Duka et al., 2002).

Visual attention capture by alcohol cues, across direct and indirect
measures, tends to be more consistently related to differences in typical
alcohol use than it is related to differences in AUD status, duration, and
severity. However, direct and indirect measures of attentional capture
by alcohol cues may be confounded by neurocognitive impairments
among individuals with AUD (Beatty et al., 2000; Czapla et al., 2016;
Loeber et al., 2010; Pitel et al., 2009; Romero-Martínez et al., 2018); for
review see: (Bates et al., 2002)). Accounting for these neurocognitive
impairments may be necessary in measuring attentional bias among
individuals with AUD and when evaluating relationships between at-
tentional bias scores and differences in AUD status, duration, and/or
severity (Fadardi and Cox, 2006; Loeber et al., 2009).

4.2.1.2. Approach responses. The best evidence for or against the ability
of alcohol cues to elicit skeletomotor behavioral manifestations of IS
attribution (viz., approach responses) in humans might be acquired by
measuring beverage-directed approach movement initiation and its
latency, time spent within proximity, postural changes, or skeletal
muscle ‘priming’ following presentation of alcoholic beverages at a
distance. Currently, the best available evidence comes from two
computer-based tasks using visual proxies for alcoholic beverages and
approach v. avoidance responses. The first task is a modified version of
the Simon task (De Houwer et al., 2001) in which people use arrow keys
to move a manikin toward or away from alcohol-related and control
pictures presented on the computer screen (Field et al., 2005). On this
task, people tend to be faster to respond when instructed to move the
manikin toward rather than away from alcohol pictures ((Barkby et al.,
2012; Christiansen et al., 2012; Field et al., 2011a, 2008, 2007, 2005;
Pieters et al., 2012; Schoenmakers et al., 2008; van Hemel-Ruiter et al.,
2011), but see: (Snelleman et al., 2015; Spruyt et al., 2013)), an alcohol
approach bias that appears to be positively related to alcohol use level
((Barkby et al., 2012; Christiansen et al., 2012; Field et al., 2011a,
2008, 2005; Pieters et al., 2012), but see: (van Hemel-Ruiter et al.,
2011)), and not AUD status (Barkby et al., 2012). The second task is a
modified version of the Approach-Avoidance task (Chen and Bargh,
1999) in which participants use a joystick to pull (approach) or push
(avoid) pictures of alcoholic and non-alcoholic beverages among other
objects presented on the computer screen (Wiers et al., 2009). On this
task, people tend to be faster to pull alcoholic beverage pictures toward
themselves than they are to push them away (Eberl et al., 2013; Ernst
et al., 2013; Fleming and Bartholow, 2014; Leeman et al., 2018; Loijen
et al., 2018; Peeters et al., 2013, 2012; Sharbanee et al., 2014; Wiers
et al., 2011, 2010, 2009, 2015b, 2014), an alcohol approach bias that
appears to be positively related to alcohol use level and/or AUD status
(Fleming and Bartholow, 2014; Peeters et al., 2013, 2012; Sharbanee
et al., 2014; Wiers et al., 2017, 2014).

Arguably, there is a third measure of the approach response in hu-
mans. Some researchers have used the Implicit Association Task (IAT)
(Greenwald et al., 1998) to assess how strongly the concept of “alcohol”
(primed by words or pictures of different brands or types of alcoholic
beverages) is linked to other concepts such as “active” (primed by
words like ‘energetic’, ‘lively’, ‘cheerful’) or “positive” (primed by
words like ‘good’, ‘pleasant’, ‘nice’) (Wiers et al., 2002) as well as
“approach” (activated by words like ‘approach’, ‘advance’, ‘closer’)

R.U. Cofresí, et al. Neuroscience and Biobehavioral Reviews 107 (2019) 897–926

905



(Palfai and Ostafin, 2003). In many cases, IAT scores have been found
to be positively related to alcohol use levels ((Houben and Wiers, 2009;
Jajodia and Earleywine, 2003; Ostafin and Marlatt, 2008; Ostafin and
Palfai, 2006; Palfai and Ostafin, 2003; Wiers et al., 2017, 2002), but
see: (Tibboel et al., 2015)). It is an open question, however, whether the
IAT truly measures the same construct as the modified Simon Task and
modified Approach-Avoidance Task described above (cf. (Wiers et al.,
2017). Conceptually, it seems that the IAT might be more likely to re-
veal the structure of the implicit alcohol-associative memory network
whereas the modified Simon Task and modified Approach-Avoidance
Task might be more likely to detect expression (manifestation) of IS in
human skeletomotor behavior.

4.2.1.3. Autonomic responses. Autonomic responses can be registered in
many different physiological units including the activity of the
cardiovascular system, hormone-secreting glands (e.g., the adrenal
glands, the pancreas), smooth muscle (e.g., lining blood vessels or the
gut), and the neurons that innervate them. For simplicity, we chose to
review evidence from only a single physiological unit of analysis: heart
rate. Heart rate is useful summary index of autonomic response because
heart rate is sensitive to the interactive effects of many physiological
processes including circulating hormones, nervous system activity,
respiratory rate, and smooth muscle activity. Presentation of alcoholic
beverages is able to elicit an increase in heart rate (measured as more
beats per minute) that is sustained as the person performs the act of
ingesting the presented beverage, but dissipates shortly thereafter
(Kaplan et al., 1985; Newlin, 1986, 1985; Pomerleau et al., 1983;
Staiger and White, 1991; Turkkan et al., 1988). The smell, the taste, and
the sight of alcoholic beverages can also increase heart rate when
presented in isolation from each other (e.g., smell only, sight only)
(McCaul et al., 1989; Payne et al., 1992; Stormark et al., 1995; Turkkan
et al., 1989; Witteman et al., 2015). Increases in heart rate have also
been observed following personalized alcohol use-related mental
imagery (Seo et al., 2013; Sinha et al., 2009). The latter has also
been demonstrated to produce greater increases in heart rate among
people with AUD (Seo et al., 2013; Sinha et al., 2009) whereas in vivo
exposure to alcoholic beverages can do so sometimes (Kaplan et al.,
1985), but not others (Thomas et al., 2005). Presentation of alcoholic
beverage sights or smells or tastes in isolation can raise heart rate to a
greater extent in some people with AUD (Ingjaldsson et al., 2003;
Stormark et al., 1995), but not all (McCaul et al., 1989; Turkkan et al.,
1989). Presentation of alcohol-related words is able to increase heart
rate to the same extent in people with and without AUD (Stormark
et al., 2000).

4.2.1.4. Conscious craving/subjective experience of desire for alcohol.. The
construct of craving has a long history in the study of alcoholism
(Drummond, 2001; Edwards and Gross, 1976; Jellinek, 1960; Tiffany
and Conklin, 2000). The ability of IS-attributed cues to provoke an
explicit desire for alcohol is important not only because “strong urges,
cravings, or desires to use alcohol” are now one of the diagnostic
criteria for AUD (Diagnostic and statistical manual of mental disorders
(DSM-5{®}), 2013), but also because the greater a person’s
retrospective subjective experience of alcohol craving in daily life, the
greater the number of alcohol-related problems and symptoms of AUD
they are likely to be experiencing (Chakravorty et al., 2010; Murphy
et al., 2014; Ray et al., 2017; Rohn et al., 2017; Yoon et al., 2006).
Consequently, the development of cue-provoked craving for alcohol
could be considered one of the earliest signs of alcohol cue ISS. In
keeping, presentation of alcoholic beverages is able to provoke self-
reported explicit desire for alcohol (viz., conscious craving) measured
using single-item visual analog scale or multi-item questionnaires
(Amlung and MacKillop, 2014; Blaine et al., 2019; Cooney et al.,
1984; Curtin et al., 2005; Field et al., 2005, 2004; Hollett et al., 2017;
Kambouropoulos and Staiger, 2004; Kaplan et al., 1985; Kareken et al.,
2010a; Kiefer et al., 2015; Kreusch et al., 2017; MacKillop, 2006;

MacKillop et al., 2015; MacKillop and Lisman, 2008, 2005; Monti et al.,
1987; Ostafin et al., 2008; Pomerleau et al., 1983; Ramirez et al.,
2015a, 2015b; Rohsenow et al., 1994; Staiger and White, 1991; Willner
et al., 1998). Isolated presentation of alcohol-related smells, tastes, and
pictures or videos can also provoke craving ((Bragulat et al., 2008;
Christiansen et al., 2017; Courtney et al., 2015; Fey et al., 2017; Field
et al., 2007; Field and Eastwood, 2005; Filbey et al., 2008; Lovett et al.,
2015; Lukas et al., 2013; Manchery et al., 2017; Mccusker and Brown,
1990; Oberlin et al., 2016, 2013; Ostafin et al., 2008; Payne et al., 1992;
Pronk et al., 2015; Schneider et al., 2001; Stauffer et al., 2017;
Stormark et al., 1995; Veilleux et al., 2018; Vollstädt-Klein et al.,
2012; Witteman et al., 2015; Yoder et al., 2009), but see: (Mucha et al.,
2000)) as can personalized alcohol use-related mental imagery (Blaine
et al., 2019; Fox et al., 2007; Seo et al., 2013; Sinha et al., 2009).

In theory, as ISS progresses the magnitude of cue-provoked craving
for alcohol should increase. In line with this prediction, presentation of
alcoholic beverages can provoke greater craving among people with
AUD compared to controls ((Pomerleau et al., 1983; Reid et al., 2006;
Thomas et al., 2005) but see: (Kaplan et al., 1985; Monti et al., 1987)).
People with AUD are also more likely than controls to report greater
increases in craving following presentation of the isolated sight or smell
or taste of alcoholic beverages (George et al., 2001; Ingjaldsson et al.,
2003; Myrick et al., 2004; Reid et al., 2006; Schneider et al., 2001;
Wiers et al., 2015c) and following exposure to personalized alcohol use-
related mental imagery (Reid et al., 2006; Seo et al., 2013; Sinha et al.,
2009). Among people without AUD, higher levels or more hazardous
alcohol use also predict greater craving following presentations of ac-
tual beverages or pictures of them (Blaine et al., 2019; Curtin et al.,
2005; Hollett et al., 2017; Lovett et al., 2015; Pronk et al., 2015;
Stauffer et al., 2017; Veilleux et al., 2018). Furthermore, the magnitude
of craving produced by alcohol’s interoceptive stimuli is also positively
related to both alcohol use and AUD severity (Bujarski et al., 2018,
2017, 2015; Bujarski and Ray, 2014; Duka et al., 1999; King et al.,
2016, 2014, 2011, 2002; Morean et al., 2013). Together, these findings
suggest sensitization of exteroceptive and interoceptive alcohol cue-
elicited craving responses. Finally, it also appears that the level of
craving induced by at least exteroceptive alcohol cues can become
elevated after at least 2 months of abstinence from alcohol, at least
among people with AUD (Li et al., 2015; Monti et al., 1993a), which is
in keeping with theorized state-dependent modulation of IS attribution
and expression.

4.2.1.5. Cue as conditional reinforcer effects.. To our knowledge,
currently there are no published reports of direct tests for the
conditioned rewarding value of alcohol cues in humans (i.e., alcohol
cue-based reinforcement of a new instrumental response, alcohol cue-
based reinforcement of a new cue), or even indirect tests such as
measuring the extent to which an alcohol-associated cues can reinstate
extinguished instrumental actions that previously produced alcohol
reward. This precludes any investigation of whether conditional
reinforcing value increases as a function of alcohol use level or AUD
status, severity, and duration that would be predicted by ISST.

4.2.1.6. Pavlovian to instrumental transfer effects. In people, the alcohol-
specific PIT construct developed in non-human animal models of
alcohol seeking maps onto situations in which exposure to alcohol-
predictive Pavlovian cues increases the likelihood of actions taken to
acquire or consume alcoholic beverages. The increases in action
likelihood are believed to be at least in part a consequence of cue-
triggered Pavlovian alcohol seeking reactions. However, it is important
to keep in mind that in non-human animal model paradigms, the
subject is typically already in a place associated with alcohol
availability, and the instrumental action to obtain or consume alcohol
does not require the subject to leave that place. That is, the alcohol-
specific PIT construct developed from the non-human animal models
may only naturally apply to specific situations in which people may find
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themselves. Nonetheless, there have been numerous demonstrations of
the alcohol-specific PIT construct in the human laboratory.
Instrumental responding for alcohol, measured as ingested alcohol
volume or ingestion speed in bogus beverage evaluation tasks or
number of alcohol beverage-earning responses in computerized tasks,
has been shown to increase following isolated presentation of alcoholic
beverage cues within specific sensory modalities (Field and Eastwood,
2005; Field and Jones, 2017; Hodgson et al., 1979; Martinovic et al.,
2014; Roehrich and Goldman, 1995; Rose et al., 2018; Stein et al.,
2000; Van Dyke and Fillmore, 2015), but see: (Carter and Tiffany, 1999;
Field et al., 2007, 2005; Jones and Field, 2013; Kersbergen and Field,
2017; Stautz et al., 2017) as well as following presentation of alcoholic
beverages and/or the interoceptive stimuli produced by ingestion
((Amlung and MacKillop, 2014; Bigelow et al., 1977; Blaine et al.,
2019; Christiansen et al., 2017; Chutuape et al., 1994; Corbin et al.,
2008; Farris and Ostafin, 2008; Fernie et al., 2012; Fromme and Dunn,
1992; Hodgson et al., 1979; Holdstock and de Wit, 1998; Johnson and
Fromme, 1994; Larsen et al., 2012; Leeman et al., 2009; Ludwig et al.,
1978, 1974; MacKillop and Lisman, 2005; Marlatt et al., 1973; Ostafin
et al., 2008; Perkins et al., 2003; Rose and Duka, 2006; Stockwell et al.,
1982; Wetherill and Fromme, 2009; Williams and Brown, 1985), but
see: (Paredes et al., 1973)). In keeping with ISST, these PIT effects have
been found to differ in magnitude based on AUD status ((Higgins and
Marlatt, 1973; Hodgson et al., 1979; Ludwig et al., 1978; Marlatt et al.,
1973; Stockwell et al., 1982), but see: (Bujarski et al., 2018)) as well as
individual differences in typical alcohol use levels ((Blaine et al., 2019;
Corbin et al., 2008; Leeman et al., 2009; Van Dyke and Fillmore, 2015),
but see: (Kersbergen and Field, 2017; Martinovic et al., 2014)).

4.2.2. Alcohol cue-related brain responses
In most cases, functional brain responses to alcohol-related cues in

people are measured using simple tasks that involve only repeated
presentation of alcohol-related stimuli (e.g., pictures). This allows for
unambiguous interpretation of changes in measured brain activity. In
part, the simplicity of tasks reflects the technical difficulty of non-in-
vasively measuring activity in the living human brain.

4.2.2.1. Brain responses measured using the fMRI-BOLD
technique. Behavioral responses to alcohol-associated cues, such as
attentional bias and approach tendency, are theorized to be a
downstream consequence of cue-induced activation of IS
neurocircuitry components. Therefore, it is important to verify the
ability of alcohol-associated cues to activate the IS attributor and
expressors in the living human brain. Functional magnetic resonance
imaging (fMRI) provides a way to visualize cue-induced neuronal
activation or de-activation in specific areas of the living human brain
using the regional blood oxygen level-dependent (BOLD) contrast
imaging technique (Logothetis, 2003; Logothetis and Pfeuffer, 2004).
As a previous meta-analysis showed (Schacht et al., 2013), using the
fMRI-BOLD technique, alcohol cue-induced activation (i.e., more
positive BOLD signals) has been reported in the IS attributor, VTA
complex, and the IS expressor systems, amygdala and nucleus
accumbens, as well as in the medial and orbital prefrontal cortices,
which are innervated by the IS attributor and inter-connected with the
IS expressor systems. Specifically, activation has been reported in
response to isolated alcohol cues presented in the following sensory
modalities: sight (Ames et al., 2014a,b; Braus et al., 2001; Brumback
et al., 2015; de Sousa Fernandes Perna et al., 2017; Fryer et al., 2013;
Grüsser et al., 2004; Ihssen et al., 2011; Kim et al., 2014; Lee et al.,
2013; Lukas et al., 2013; Nikolaou et al., 2013; Schad et al., 2018;
Sekutowicz et al., 2019; Tapert et al., 2004; Vollstädt-Klein et al., 2010;
Wiers et al., 2015c, 2014; Wrase et al., 2002), smell ((Kareken et al.,
2004; Schneider et al., 2001) but see: (Lukas et al., 2013)), and taste
(Claus et al., 2011; Courtney et al., 2015; Filbey et al., 2008; Oberlin
et al., 2016), as well as their combinations ((George et al., 2001; Myrick
et al., 2004), but see: (Bragulat et al., 2008)).

In keeping with an alcohol cue ISS mechanism, typical alcohol use
levels and AUD status or severity tend to be positively related to the
magnitude of BOLD signals during exposure to isolated alcohol-related
sights (Ames et al., 2014a, 2014b; Braus et al., 2001; Brumback et al.,
2015; Fryer et al., 2013; Grüsser et al., 2004; Heinz et al., 2004; Ihssen
et al., 2011; Kim et al., 2014; Lee et al., 2013; Tapert et al., 2004; Wiers
et al., 2015c, 2014); but see: (de Sousa Fernandes Perna et al., 2017;
Oberlin et al., 2018; Schad et al., 2018; Vollstädt-Klein et al., 2010;
Wiers et al., 2015c)), smells (Kareken et al., 2004; Schneider et al.,
2001), and tastes (Claus et al., 2011; Courtney et al., 2015; Filbey et al.,
2008) as well as their combinations (George et al., 2001; Myrick et al.,
2004). In agreement with a previous meta-analysis (Schacht et al.,
2013), we found that across studies, cue-induced BOLD in either the
ventral striatum (i.e., nucleus accumbens) or prefrontal cortices (esp.
orbital and lateral) were the most frequently associated with clinical or
drinking measures.

As mentioned in Section 2.2, many of the studies reviewed here
reported a significant positive relationship between the level of acti-
vation induced by alcohol cues in a person’s IS system (esp. amygdala,
nucleus accumbens, and prefrontal cortical partners) and that person’s
self-report of the intensity of desire or craving for alcohol induced by
those cues ((Filbey et al., 2008; Fryer et al., 2013; Myrick et al., 2004;
Oberlin et al., 2016; Schacht et al., 2013; Tapert et al., 2004; Wiers
et al., 2015c); but see: (Ames et al., 2014b; Grüsser et al., 2004; Kim
et al., 2014)). Other studies reviewed here did not test the relationship,
but implied it in describing their findings (Bragulat et al., 2008;
Brumback et al., 2015; George et al., 2001; Heinz et al., 2004; Huang
et al., 2018; Kareken et al., 2010b, 2010a, 2004; Lee et al., 2013; Lukas
et al., 2013; Schneider et al., 2001; Seo et al., 2013; Vollstädt-Klein
et al., 2010). To the extent that it reflects the transformation of
“wanting” into a subjective feeling of wanting, then this relationship is
important for the ability of ISST to explain changes in the subjective
experience of reactivity to alcohol cues in AUD, and warrants further
study.

4.2.2.2. Brain responses measured using the PET technique. Alcohol cue-
induced activation measured using the fMRI BOLD technique in the
brain structures we are referring to as the “IS expressors” could reflect
something other than IS signal-related processing; for example, it could
reflect processing of a signal from the motivational system involved in
avoidance, aversion, and defensive responses. However, since the IS
signal is theorized to be encoded by dopamine release from projections
that originate in the VTA/SNc complex, one way to ensure that alcohol
cue-induced activation of the IS expressors measured with fMRI can
reflect IS signal-processing is to measure the IS signal generated upon
presentation of said cues. In other words, researchers need to measure
cue-induce dopamine release in the IS expressors in the living human
brain. Positron emission tomography (PET) can reveal cue-induced
neurochemical release in specific areas of the living human brain using
radioactive ligands (Phelps and Mazziota, 1985). Using radioactive
raclopride, a dopamine receptor antagonist, PET has been used to show
cue-induced dopamine release in the ventral striatum as a decrease in
raclopride binding potential, which contains the IS expressor system
labeled “Accumbens” in Fig. 1, in response to the taste of alcohol
(Oberlin et al., 2013). However, this does not appear to scale with
alcohol use levels or AUD status or severity (Oberlin et al., 2013). It
remains to be seen whether this null relationship will replicate in a
larger sample or when more intense cues are presented (i.e.,
combinations of alcohol sight, smell, and taste).

4.2.2.3. Brain responses measured using the EEG-ERP
technique. Although both fMRI BOLD and PET inform us about which
brain systems (at the circuit and biochemical levels) are engaged by
alcohol-associated cues, they do not directly measure the neuronal
response to those cues. The fMRI BOLD signal does not reflect neural
activation directly but rather reflects changes in a complex
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hemodynamic response that hinges upon neuro-vascular coupling via
perivascular astrocytes (Shetty et al., 2012). The PET signal can reflect
neurochemical release, but it is based on changes in binding of the
radioactive tracer at both specific and non-specific binding sites, which
may be present on both neuronal and non-neuronal cells (Phelps and
Mazziota, 1985). Furthermore, both techniques measure biological
signal variations that unfold over seconds (by design in fMRI or by
signal-to-noise or tracer kinetics-based limitations in PET) rather than
on the millisecond timescale of phasic neuronal activity (synaptic
transmission) (Zoli et al., 1999). In contrast, the event-related
potential (ERP) technique, derived from the scalp-recorded
electroencephalogram (EEG), reflects the phasic activity across
different neuronal populations following stimulus presentation (Luck
and Kappenman, 2017). Studies using the ERP technique assure us that
alcohol cue-related activation and dopamine release in nodes of the IS
circuit using fMRI-BOLD and PET-raclopride, respectively, reflect
alcohol cue-related activation of relevant neuronal populations in a
variety of different stimulus presentation paradigms (Bailey and
Bartholow, 2016; Bartholow et al., 2018, 2010; Dickter et al., 2014;
Fleming and Bartholow, 2014; Herrmann et al., 2001; Kroczek et al.,
2018; Martinovic et al., 2014; Martins et al., 2019; Petit et al., 2012;
Ryerson et al., 2017; Shin et al., 2010).

In keeping with an alcohol cue ISS mechanism, alcohol use levels
are positively related to the magnitude of various components in the
ERP waveform (specifically, the P1, P2, N1, N2, P3, LPP, and FSW)
elicited by alcohol-related visual stimuli in a variety of stimulus pre-
sentation paradigms ((Bailey and Bartholow, 2016; Bartholow et al.,
2010, 2003; Fleming and Bartholow, 2014; Herrmann et al., 2001;
Kroczek et al., 2018; Petit et al., 2012; Ryerson et al., 2017; Shin et al.,
2010); but see: (Martinovic et al., 2014)). Less consistently, AUD status
appears to be positively related to the magnitude of some of the ERP
waveform components (e.g., P3) elicited by alcohol-related visual sti-
muli ((Dickter et al., 2014; Matheus-Roth et al., 2016; Namkoong et al.,
2004); but see: (Hansenne et al., 2003; Littel et al., 2013; Petit et al.,
2015)), in keeping with meta-analytic findings across substance use
disorders (Littel et al., 2012). Together, these findings suggest that al-
cohol use levels and AUD may increase neuronal communication re-
lated to attentional (P1, P2, N1) and affective or motivational (P3, LPP)
processing of alcohol-related visual stimuli as well as the need to recruit
additional cognitive control resources (N2, FSW) in order regulate be-
havior according to task demands in the presence of task-irrelevant
alcohol-related stimuli.

4.2.3. On the origin of alcohol cue-related reactivity
The ISST holds that IS attribution transforms “cold” Pavlovian

conditioned reward-predictive stimuli to “hot” Pavlovian conditioned
reward-predictive stimuli that act as motivational “magnets” (Berridge
et al., 2009; Berridge and Robinson, 2016, 2003; Robinson and
Berridge, 2001, 2000, 1993). Thus, a critical feature of the application
of ISST to alcohol is that reactivity to alcohol-predictive cues reflects
Pavlovian (aka classical) conditioning-like associative learning pro-
cesses. The vast majority of work in preclinical non-human animal
models confirms that alcohol can serve as an unconditional stimulus for
appetitive (and aversive) Pavlovian conditioning (e.g., (Cofresí et al.,
2019a; Cunningham et al., 2002a, 2002b; Krank, 2003; Krank et al.,
2008; Srey et al., 2015)). However, it is important to establish, as best
we can, that this is also true for people.

The idea that the ability of the stimulus features of alcoholic bev-
erages to elicit attention and conscious craving for alcohol in people is
due to naturally-occurring Pavlovian conditioning processes is sup-
ported by at least two controlled conditioning studies. In the first study
(Field and Duka, 2002), the sight and smell of a beverage that contained
a low dose of ethanol (0.2 g/kg or ≈ 10mg/dL at 30min post-inges-
tion) during training acquired the ability to elicit greater attention
(measured as number of stimulus-directed gaze shifts using eye-
tracking systems) and self-reported alcohol craving at test relative to

the sight and smell of a beverage that did not contain ethanol during
training. In the second study (Mayo and de Wit, 2016), pictures of the
beverage that contained a moderate dose of ethanol (0.6 g/kg or ≈
40mg/dL at 30min post-ingestion) during training acquired the ability
to elicit greater attention (measured as number of stimulus-directed
gaze shifts using eye-tracking systems) in a modified visual dot-probe
task relative to pictures of the beverage that did not contain ethanol
during training.

The idea that the ability of the stimulus features of alcoholic bev-
erages can come to elicit autonomic state changes in people is due to
naturally-occurring Pavlovian conditioning processes is supported by at
least one controlled conditioning study. In this study (Staiger and
White, 1988), the sight and smell of a beverage that contained a
moderate dose of ethanol (0.5 g/kg or ≈ 30mg/dL at 30min post-in-
gestion) during training acquired the ability to elicit anticipatory in-
creases in heart rate (an index of autonomics) at test relative to the sight
and smell of a beverage that did not contain ethanol during training.

Some empirical support for the idea that alcohol-related stimuli
elicit changes in regional brain activity in people is due to naturally-
occurring Pavlovian conditioning processes can be derived from a study
conducted by David Kareken and colleagues (Oberlin et al., 2018). An
arbitrary neutral visual stimulus (a geometric shape) was repeatedly
paired with alcohol (18mg/dL per intravenous infusion), and conse-
quently, it acquired the ability to elicit an expectation of subsequent
alcohol infusion. This was revealed by the fact that presentation of the
newly conditioned stimulus (in the absence of alcohol) produced sta-
tistically significant activation (positive fMRI BOLD contrast) in the
frontoparietal, orbitofrontal networks, anterior cingulate, and insular
cortices as well as sub-threshold activation in the ventral striatum. As
discussed by Kareken and colleagues, the study boasts a much larger
(n= 60) and better characterized sample than previous work (Kareken
et al., 2012); thus, the conflicting findings in the latter were likely the
result of type 1 error. However, two majors caveats apply to the
(Oberlin et al., 2018) study: (1) the pattern of conditioned alcohol cue-
elicited regional brain activity may reflect the particular demands of
the decoy reaction time task (i.e., goal-directed search for visual sti-
muli); and (2) the conditioned alcohol cue failed to produce detectable
biases in attention as measured by reaction time (although, as the au-
thors argue, their paradigm was designed to measure cue-related brain
activity, not cue-related attentional biases). Despite these caveats, the
(Oberlin et al., 2018) study provides the strongest direct evidence to
date that ethanol can serve as a purely pharmacological unconditional
stimulus that supports learning about antecedent conditional stimuli in
humans.

4.3. Interim summary 2

In this section, we have reviewed evidence for attribution of IS to
learned alcohol-predictive cues. We found that in humans and non-
human animal models alike, alcohol-predictive cues are attributed with
IS. Specifically, alcohol-predictive cues acquire the ability to: (1) elicit
alcohol seeking reactions (e.g., affective state change, attention, ap-
proach, and conscious craving for alcohol); (2) serve as conditional or
secondary reinforcers (at least in non-human animal models) that can
maintain reactivity in the absence of immediate primary reinforcement;
(3) induce or invigorate instrumental alcohol seeking actions; and (4)
engage the IS circuitry. We have also reviewed the evidence that al-
cohol cues undergo ISS. We found that in humans and non-human
animal models alike, the amount of IS attributed to alcohol-predictive
cues appears to increase as a function of alcohol involvement.
Specifically, greater alcohol involvement makes alcohol-predictive cues
able to: (1) elicit higher levels of alcohol seeking reactions; (2) better
serve as conditional reinforcers (at least in non-human animals); (3)
more strongly induce or invigorate instrumental alcohol seeking actions
(at least in non-human animals); and (4) more strongly activate the IS
circuitry (at least in humans). In humans, the in-the-moment intensity
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of conscious craving for alcohol induced by alcohol cues appears to be
positively related to the degree of activation these cues induce in the IS
circuitry, especially the amygdala, ventral striatum (nucleus ac-
cumbens), and prefrontal cortices, a relationship requiring further
study that is important for the ability of ISST to explain changes in the
subjective experience of alcohol cue reactivity in AUD. Finally, given
that the prefrontal cortices are believed to mediate cognitive control
processes (Barbas, 2000; Braver, 2012; Inzlicht et al., 2015;
Ridderinkhof, 2004), the present findings also suggest that incidental
exposure to alcohol cues may impair on-going alcohol use-unrelated
behavior and goal pursuit by drawing away attentional resources
available to cognitive control processes or releasing inappropriate be-
havioral responses that create conflict and require the recruitment of
additional cognitive control resources for successful completion of on-
going behavior. These kinds of effects from incidental alcohol cues have
been reported in human behavioral laboratory tasks (Fryer et al., 2013;
Nikolaou et al., 2013; Sommer et al., 2017).

5. Discussion

5.1. General

Nona, Hendershot, and Lê (2018) recently reviewed the evidence
for sensitized behavioral, physiological, and/or subjective responses to
alcohol intoxication as a mechanism in AUD. In the present review, we
set out to examine the evidence for sensitized IS attribution to alcohol-
predictive cues (viz., sensitized cue-triggered “wanting”) as a neu-
ropsychological mechanism in AUD. It is important to note that it re-
mains an open question whether the construct of IS attribution devel-
oped in non-human animals truly exists in humans, and if so, whether it
manifests in the same ways, undergoes sensitization, and affects sub-
jective experience. The answers to these questions have implications for
the ability of the ISST to explain important behavioral phenomena in
alcohol addiction such as the progressive loss of control over use, use
despite negative consequences, and the subjective experience of desire
and craving including preoccupation with alcohol-related thoughts. It
may turn out to be the case that ISST can explain the former, but not the
latter. Our review cannot provide definite answers to these questions.
Nevertheless, it indicates that across different units of analysis that may
reflect manifestations of IS attribution in humans and non-human ani-
mals, the available evidence tends to be consistent with predictions for
sensitized alcohol cue-triggered “wanting” (viz., alcohol cue IS sensiti-
zation [ISS]) as a mechanism in AUD.

Many predictions for alcohol cue ISS as a mechanism in AUD remain
underexamined across levels of biological organization in humans and
non-human animals. Some underexamined predictions at the beha-
vioral and neurobiological units of analysis are especially low-hanging
fruit worth pointing out to researchers. First, to the extent that the IS
attributor can be identified with dopamine cells in the VTA complex,
alcohol-associated cues should be able to activate dopamine cells in the
VTA complex of non-human animals, but we were unable to find direct
evidence bearing on this prediction. Although, to the extent that the IS
signal can be identified with cue-induced phasic dopamine release from
dopamine terminals in the IS expressors, it should be noted that there is
a growing body of evidence indicating that the IS signal can occur in the
absence of IS attributor activation (Cachope and Cheer, 2014). Second,
we do not know whether chronic ethanol exposure is able to shift the
balance of excitatory and inhibitory drive or tone on those cells or their
intrinsic excitability. Third, a systematic empirical exploration of
chronic ethanol exposure profile parameter-dependent functional
changes within and between IS system components that could mediate
alcohol cue ISS is lacking. Fourth, IS-attributed alcohol cues are pre-
dicted to elicit changes in autonomic state that support alcohol seeking
reactions and actions at the level of physiology. However, little to no
attention has been paid to autonomics when modeling alcohol cue re-
activity in non-human animals, and in humans, little attention has been

paid to sensitization of cue-induced autonomic changes as a function of
alcohol involvement. Fifth, IS-attributed alcohol cues are predicted to
serve as secondary or conditional reinforcers that are able to maintain
reactivity and behavior in the absence of immediate primary alcohol
reinforcement (i.e., post-ingestive psychopharmacology). There is sub-
stantial evidence from non-human animal models consistent with this
prediction, but no systematic examination of how the level of ethanol
exposure determines the degree to which alcohol cues serve as sec-
ondary reinforcers for alcohol seeking. This is an important, if under-
appreciated, behavioral function of IS-attributed cues because it is
theorized to mediate the persistence of alcohol cue reactivity. Despite
the relevance of this particular property to AUD treatment and relapse,
we were unable to find any studies examining the conditioned re-
inforcing property of alcohol-associated cues in humans. Sixth, given
the multitude of different behavioral and brain measures collected as
putative indicators of IS attribution and/or advanced as reflecting ISS in
humans, factor analytic work is warranted to test which of these mea-
sures load onto the same latent construct as well as to determine which
measures are the most reliable and/or valid indicators of that construct
(Wardle et al., 2018).

It is important to note that gender/sex differences continue to
emerge for the acute effects of alcohol and its cues in the human la-
boratory model literature (Bates et al., 2011; Chaplin et al., 2008;
Hartwell and Ray, 2013; Kaplan et al., 1985; Rubonis et al., 1994; Udo
et al., 2009). Yet female organisms are often absent in studies from
preclinical non-human animal model literature. Although this omission
is being addressed, much work is ahead for preclinical researchers
working with non-human animal models. Once the omission has been
corrected, a thorough examination of potential gender/sex differences
in ISST-derived predictions for this unique etiological pathway to AUD
may be conducted in the vein of (Barker and Taylor, 2017).

A major issue worth raising is that the degree to which ‘natural’
alcohol cues (e.g., the sight, smell, and taste of the preferred alcoholic
beverage) in humans operate like the conditioned alcohol cues studied
in human and non-human animal laboratory models remains to be es-
tablished. This is an important issue for the applicability and translation
of ISST into a unique etiological pathway for AUD (and more broadly,
for SUD). ISST addresses a psychological property (IS) that may or may
not be attributed to learned conditional predictive stimuli for un-
conditional rewarding stimuli including drugs of abuse such as alcohol.
However, not much attention has been paid to the ability of alcohol to
serve as a pharmacological unconditional stimulus (US) for conditional
stimulus (CS) or ‘cue’ learning in humans. Our literature review iden-
tified only a handful of controlled alcohol cue conditioning studies in
humans, each using different administration procedures, different
conditioning parameters, and different measures of cue reactivity.
Consequently, more controlled conditioning studies are warranted,
especially within-subject studies comparing ‘artificial’ alcohol cues
conditioned in the human laboratory to ‘natural’ alcohol cues that were
putatively conditioned over the person’s alcohol use history.

A related issue is that if ‘natural’ alcohol cues are truly conditioned
over a person’s alcohol use history, then these cues are conditioned
within specific emotional, physical, social, and temporal contexts. The
natural contexts for alcohol use, and thus, the contexts in which ‘nat-
ural’ cues are conditioned, are difficult to simulate in the human la-
boratory. Thus, a major caveat applies to human laboratory studies,
especially those using functional neuroimaging techniques, which in-
volve the use of equipment—and supine body posture (Harmon-Jones
and Peterson, 2009; Price and Harmon-Jones, 2011)–that in many cases
opposes any degree of natural physical and motivational context. These
studies are typically done in a context that has never been associated
with alcohol use, and often explicitly signal the non-availability of al-
cohol to participants. This experimental setting confounds the inter-
pretation of negative results. In order to study reactivity to ‘natural’
alcohol cues in their ‘natural’ contexts, researchers should consider the
combined use of ambulatory assessment and mobile human
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neuroimaging technology.
A final consideration for evaluating the model-derived predicted

relationship between IS attribution and alcohol involvement in humans
is that the latter has multiple causes and functions. Additionally, there
may be other liability factors that moderate the magnitude of associa-
tion between and within individuals. Some individuals may be more
vulnerable than others to ISS as a pathway to AUD, and samples that
contain more of these individuals may show stronger sample-level
evidence for alcohol cue ISS.

5.2. Alcohol subjective response (ASR) may moderate AUD risk via alcohol
cue ISS pathway

One trait-like liability factor that strongly moderates risk for AUD,
alcohol subjective response (ASR) phenotype, may do so by conferring
differential vulnerability to ISS as a pathway to AUD. We introduce ASR
phenotype and discuss evidence in favor of this idea below.

5.2.1. The link between alcohol subjective response (ASR) phenotype and
risks for AUD

The subjective experience of alcohol’s pharmacological effects pri-
marily can be ascribed to two factors. The first, pharmacokinetics, re-
fers to factors that determine the amount of alcohol circulating through
the body at any given point in time following ingestion. Variation in
pharmacokinetic factors can be due to both state (e.g., amount of food
in the stomach, dehydration, other drugs in circulation, acquired me-
tabolic tolerance) and trait factors (e.g., baseline expression level and
activity profiles of alcohol-metabolizing enzymes) as well as ingestion
route and rate (Cederbaum, 2012). The second, pharmacodynamics,
refers to factors that determine the biochemical and physiological ef-
fects of alcohol. Variation in pharmacodynamic factors can be due to
both state (e.g., current level of certain hormones, other drugs in cir-
culation) and trait factors (e.g., baseline activity level and dynamics in
certain brain circuits) (Brown et al., 2007; Haughey et al., 2008; Sharko
et al., 2016, 2013; Yoder et al., 2005).

In humans, the subjective experience of alcohol’s pharmacological
effects, i.e., the construct of a subjective response to alcohol as a
pharmacological stimulus, can be summarized along 3–4 dimensions,
some of which appear to develop over the course of a person’s drinking
history, viz., as the person gains experience with alcohol as a pharma-
cological stimulus (Bujarski et al., 2015; Ray et al., 2009). Importantly,
even after controlling for inter-individual variation in pharmacoki-
netics, there is considerable inter-individual variation in self-reported
subjective response to the pharmacological effects of alcohol (Bujarski
et al., 2015; Gilman et al., 2012; Ray et al., 2007).

There are at least two broadly defined alcohol subjective response
(ASR) phenotypes. Specifically, some individuals may have (an in-
itially) low level of subjective response (LLR)—they recollect having
required more drinks to feel any effect, dizziness, or stumbling than
other individuals in questionnaire-based studies (Schuckit et al., 1997).
Similarly, some individuals appear to be less sensitive to alcohol’s se-
dative-like properties yet more sensitive to its stimulant-like properties
(LSedHStim)—they feel less “down” or “sluggish” or “slow thoughts”
and more “excited” or “excited” or “up” than other individuals after
equivalent alcohol doses in controlled laboratory studies (Davidson
et al., 2002; Holdstock and de Wit, 1998; King et al., 2002; Martin et al.,
1993; Newlin and Thomson, 1990; Rueger et al., 2009; Rueger and
King, 2013) Given differences in how these groups of individuals (LLR
versus HLR and LSedHStim versus HSedLStim) were identified, it re-
mains to be seen whether they stem from different or overlapping
subpopulations. However, we can tentatively treat LLR and LSedHStim
individuals as belonging to one population—the low sensitivity (LS)
ASR phenotype population—and HLR and HSedLStim individuals as
belonging a different population—the high sensitivity (HS) ASR phe-
notype population.

The LS ASR phenotypes confer risk for AUD that the HS ASR

phenotypes do not (Morean and Corbin, 2010; Quinn and Fromme,
2011). LS individuals present more AUD symptoms than HS individuals
(Bartholow et al., 2010; Fleming and Bartholow, 2014; King et al.,
2016, 2014). LS individuals tend to drink more frequently, more
heavily, and more hazardously than HS individuals (Bartholow et al.,
2010; Fleming and Bartholow, 2014; Hinckers et al., 2006; King et al.,
2011, 2002; Schuckit et al., 2005; Shin et al., 2010). Compared to HS
individuals, LS individuals are also more likely to experience negative
legal, social, and occupational consequences of alcohol use (Bartholow
et al., 2010; Fleming and Bartholow, 2014; Schuckit et al., 2017, 2005;
Schuckit and Smith, 2006). LS individuals are more likely to experience
hangovers than HS individuals, but only because LS individuals drink
much more—in fact, they are less likely to experience hangover per unit
alcohol (Piasecki et al., 2012). Similarly, LS women are more likely to
report regretted sexual activity than HS individuals, but only because
LS women drink much more—in fact, they are less likely to report re-
gretted sexual activity per unit alcohol (Hone et al., 2017). The unique
risk for AUD conferred by LS ASR phenotype may be at least in part
explained by ISST/alcohol cue ISS. The rest of the unique risk conferred
by LS ASR phenotype might relate to other psychological mechanisms
such as heavy drinking-induced adaptations in the motivations for al-
cohol use (Cooper et al., 1995) and self-selection into heavy drinking
environments and social groups (Schuckit, 1998; Schuckit and Smith,
2000).

To the extent that ASR phenotype is inherited, it may be a cause,
rather than consequence, of heavy alcohol use. Twin studies have es-
timated that its heritability is 0.60 (Heath et al., 1999; Heath and
Martin, 1991; Viken et al., 2003). ASR phenotype has also been shown
to be relatively stable within individuals (King et al., 2016, 2014).
However, there is also evidence for some degree of change in phenotype
within individuals (King et al., 2016; Morean and Corbin, 2008), per-
haps as a function developmental stage-related changes in alcohol in-
volvement.

5.2.2. The link between ASR phenotype and the alcohol cue ISS pathway to
AUD

The biases in attention and approach tendency predicted by ISST
applied to alcohol and observed in heavy drinking individuals and in-
dividuals with AUD may be a function of ASR phenotype. In keeping
with this idea, compared with HS individuals, LS individuals exhibit
faster reaction times to alcohol cued locations in the modified dot-probe
task controlling for past 30 day alcohol use (Shin et al., 2010). Simi-
larly, LS individuals exhibit greater implicit alcohol approach tendency
as measured by the alcohol AAT as well as faster reaction times to al-
cohol-cued targets in the Cued Go/NoGo Task (CGNT) compared to HS
individuals (Fleming and Bartholow, 2014). Unlike HS individuals, LS
individuals exhibited lower accuracy on response inhibition (NoGo)
probe trials in the CGNT when the cue was an alcoholic beverage image
relative to a neutral image, indicating that LS individuals were less able
to inhibit pre-potent Go responses in the face of an alcohol cue (Fleming
and Bartholow, 2014).

LS individuals also appear to be more susceptible to increases in
conscious alcohol craving elicited by real-world drinking-associated
contexts (e.g., time of day, weekend, bar/restaurant location, recent
tobacco use) than HS individuals (Trela et al., 2018). This may help
explain why LS individuals tend to drink more frequently than HS in-
dividuals. More hazardous alcohol use patterns among LS individuals
may be explained by the fact that these individuals tend to “drink too
much, too fast” in their drinking episodes than HS individuals (Trela
et al., 2016). It is also likely that “overdrinking,” i.e., drinking more
than intended (Bishop and Rodriquez Orjuela, 2018), may be more
frequent among LS individuals, although this remains to be determined.

The exaggerated brain response to alcohol cues predicted by ISST
applied to alcohol and observed in heavy drinking individuals and in-
dividuals with AUD may be a function of ASR phenotype. In the mod-
ified dot-probe task, LS individuals exhibit larger amplitude P1,
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indicating greater early attentional orienting, and a smaller amplitude
IIN (ipsilateral invalid negativity), indicating lower attentional re-or-
ienting (away from alcohol-cued locations), than HS individuals (Shin
et al., 2010). Unlike HS individuals, LS individuals also exhibit a larger
amplitude P3 to pictures of alcoholic beverages than to pictures of other
beverages and/or neutral objects in visual categorization and evalua-
tion tasks (Bartholow et al., 2010; Martins et al., 2019), putatively in-
dicating that, at the level of neural processing, alcohol cues were
evaluated as having greater affective/motivational significance. Ad-
ditionally, in the CGNT, in the few response inhibition probe trials on
which LS individuals were able to inhibit pre-potent Go response in the
face of an alcohol cue, LS individuals exhibited larger amplitude N2,
indicating increased stimulus-related conflict, and larger amplitude P3,
indicating that more processing was necessary to successfully inhibit
the pre-potent Go response in the face of an alcohol cue, relative to HS
individuals (Fleming and Bartholow, 2014).

Work in non-human animals provides additional support for the
idea that individual differences in sensitivity to alcohol intoxication are
linked to individual differences in sensitivity to the appetitive con-
ditioning effects of alcohol, and thus, increased susceptibility to alcohol
cue ISS. Rodents bred for LS-like phenotypes tend to be more sensitive
to the appetitive conditioning effects of alcohol (Beckstead and Phillips,
2009; Crabbe et al., 1992; Fish et al., 2012; Risinger et al., 1994; Shen
et al., 1995), but see: (Files et al., 1996; Sanchez et al., 1996)). Simi-
larly, rodents bred for greater sensitivity to some of the appetitive
conditioning effects of alcohol tend to be more sensitive to its other
appetitive conditioning effects ((Ciccocioppo et al., 2001, 1999;
Murphy et al., 1989; Oster et al., 2006; Toalston et al., 2008), but see:
(Stewart et al., 1996)), and more importantly, tend to exhibit LS-like
phenotypes (Agabio et al., 2001; Colombo et al., 1998; Murphy et al.,
2002; Päivärinta and Korpi, 1993; Waller et al., 1986). There is also
some support for this covariation in rodent populations that were not
selected for one trait or the other ((Chappell and Weiner, 2008; Spuhler
and Deitrich, 1984), but see: (Gauvin et al., 1993; Khanna et al., 1990)).
More extensive testing of this covariation is warranted in non-human
animals, especially using paradigms that measure different facets of IS
attribution to alcohol cues. Additionally, there is uncertainty about the
degree to which LS-like phenotypes in non-human animals can model
human LS phenotypes given that the latter are defined in terms of
subjective responses to alcohol as opposed to objective responses that
can be measured across species (Crabbe et al., 2010). Nevertheless, the
available evidence from non-human animals is consistent with a link
between ASR phenotype (at least its inherited/genetic component) and
susceptibility to alcohol cue ISS.

Together, these pieces of evidence suggest that LS individuals may
be more susceptible to alcohol cue ISS than HS individuals. However,
more work is warranted to test this hypothesis. There are at least three
ways in which LS ASR phenotype, alcohol ISS, and AUD could be in-
terrelated. First, LS ASR phenotype may be the overt manifestation of a
neurobiological endophenotype that is a trait marker for vulnerability
to ISS as a pathway to AUD (or addictions, in general). Second, LS ASR
phenotypes foster heavy alcohol use, and heavy alcohol use can induce
alcohol cue ISS, such that alcohol cue ISS is a downstream consequence
of LS ASR phenotype. Third, a combination of the former two.
Prospective studies are needed to tease apart these possibilities.

5.3. Treatment implications of alcohol cue ISS as a pathway to AUD

Alcohol cue ISS has implications for certain approaches to treatment
and more generally, for treatment outcomes, especially relapse. These
implications underscore the need for further investigation of this un-
ique etiological pathway in both humans and non-human animal
models.

5.3.1. Post-treatment susceptibility to alcohol cue-related risk for lapses and
relapse to AUD

It is highly unlikely that alcohol cue ISS accounts for all cases of
ineffective AUD treatment. However, individuals who undergo alcohol
cue ISS may comprise a large proportion of the population of people
who relapse more quickly or more frequently after treatment. There are
2 lines of evidence supporting this idea. First, the higher levels of cue
reactivity among individuals suffering from AUD (reviewed earlier).
Second, the role of cue reactivity in post-AUD treatment lapse/relapse
rates.

Post-treatment recovery/relapse rates are strongly determined by
alcohol-related cues in at least two ways (Marlatt, 1996). First, in-
dividuals with AUD may have learned to cope with stress related to
environmental demands (e.g., accidents, evaluations, financial diffi-
culty, interpersonal conflict, social pressure) by using alcohol. The ne-
gative feelings induced by these stressors may become conditioned as
alcohol-predictive cues in some individuals (Hogarth and Hardy, 2018;
Litt et al., 1990; Rubonis et al., 1994; Stasiewicz et al., 1997;
VanderVeen et al., 2016). Second, individuals with AUD may encounter
alcohol-predictive cues in their everyday environments (e.g., hidden
bottles, passing by a bar, alcoholic beverage advertising, drinking
buddies). Cue-triggered behavioral and physiological reactivity levels
(e.g., attentional bias, brain circuit activation, heart rate, salivation)
measured at treatment time can predict subsequent lapses to drinking
and relapse to AUD (Braus et al., 2001; Cox et al., 2002; Garland et al.,
2012b; Grüsser et al., 2004; Papachristou et al., 2014; Rohsenow et al.,
1994), but see (Snelleman et al., 2015). Given the possibility that al-
cohol cue ISS entails exaggerated cue-triggered Pavlovian alcohol
seeking reactions, individuals that underwent this pathway to AUD may
be driving the relationship between alcohol cue reactivity and post-
treatment lapse/relapse rate.

One way in which treatment may leave individuals vulnerable to the
situational re/lapse-risk that cue reactivity creates is that many psy-
chosocial treatment options do not directly address or attempt to reduce
cue reactivity, and those that do have limited efficacy. A second way in
which this alcohol cue reactivity-based vulnerability may persist is that
existing pharmacological treatment options alone may or may not be
able to reverse the neuroadaptations that mediate alcohol ISS.

5.3.2. Response to behavioral treatments for alcohol cue-elicited reactivity
Broadly speaking, there are two behavioral treatments for AUD that

aim to reduce reactivity to alcohol cues and thereby reduce relapse
rates. The first, older treatment is cue exposure therapy (CET). In CET
for AUD, individuals are repeatedly presented with the sights, smells,
sounds, and tastes experienced during alcohol use without subsequent
ingestion and/or intoxication until these cues cease to elicit behavioral,
physiological, and/or subjective (craving) reactions (Monti et al.,
1993b; Monti and Rohsenow, 2003; Rankin et al., 1983; Vollstädt-Klein
et al., 2011). Importantly, decreased drinking and reduced AUD relapse
rates have been reported following use of CET as either an adjunct to
standard treatment or as a stand-alone treatment (Drummond and
Glautier, 1994; Loeber et al., 2006; Monti et al., 2001, 1993b;
Rohsenow et al., 2001). The second, more recently developed treatment
is cognitive bias modification (CBM). This family of interventions uses
modified versions of behavioral tasks typically used to measure alcohol
cue-elicited attentional capture and approach tendency—as well as
modified versions of tasks used to measure implicit or explicit attitudes
toward alcohol and its cues, viz., “liking” responses—to train the op-
posite behavioral response to the same cues (Wiers et al., 2013). It
works: attentional capture and approach tendency are found to be re-
duced and/or replaced with attentional disengagement and avoidance
tendency, respectively, at least immediately after CBM (Eberl et al.,
2013; Fadardi and Cox, 2009; Field et al., 2007; Field and Eastwood,
2005; Rinck et al., 2018; Schoenmakers et al., 2010, 2007; Wiers et al.,
2011, 2010). Importantly, decreased drinking and reduced AUD relapse
rates have been reported following use of CBM as an adjunct to
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standard treatment (Cox et al., 2015; Eberl et al., 2013; Rinck et al.,
2018; Schoenmakers et al., 2010; Wiers et al., 2015a, 2011).

It would thus seem that two exceptionally effective treatments are
available against alcohol cue reactivity. Unfortunately, this is not the
case. The treatments do work, but not as well as clinicians, patients, and
researchers might like. Recent meta-analyses across existing rando-
mized clinical trials have indicated that CET (Mellentin et al., 2017)
and CBM (Boffo et al., 2019) alike have at best a small effect of un-
known reliability on AUD treatment outcomes. One explanation for this
state of affairs is that even when CET and CBM are successful in re-
ducing alcohol cue reactivity measured in the treatment setting, people
may remain at risk for the return of alcohol cue reactivity in their
natural environment due to constraints inherent to the learning and
memory process on which they both rely.

Although some researchers might see CET and CBM as strikingly
different approaches to reducing conditioned cue reactivity, their lim-
ited clinical effects likely stem from a shared reliance on training new
(alternative) responses to cues for which associations already exist in
long-term memory. CBM effects are believed to reflect, at least in part,
the training of a specific alternative response to a previously condi-
tioned cue: a response in the opposite direction than the previously-
reinforced response (Wiers et al., 2013). Similarly, despite concerns
about procedural differences between CET and the non-human animal
learning paradigms that inspired it (Conklin and Tiffany, 2002), CET
effects may reflect, at least in part, the training a specific alternative
response to a previously conditioned cue: omission of the previously-
reinforced response (Colwill, 1991; Rescorla, 1997, 1993). Never-
theless, studies of non-human animals in which a response is first
conditioned to a cue, and then “treated” by training the animal to omit
or suppress that response have shown unequivocally that the original
cue reactivity can and does readily reemerge after seemingly successful
“treatment.” This is evidenced by the post-“treatment” return of re-
activity phenomena known as spontaneous recovery and cue-induced
reinstatement (Bouton and Bolles, 1979a, 1979b; Rescorla and Heth,
1975; Robbins, 1990). With the exception of context (place cue)-in-
duced reinstatement (Pitchers et al., 2017; Saunders et al., 2014), these
relapse-like effects are especially pronounced with IS-attributed cues in
non-human animals (Saunders et al., 2013; Saunders and Robinson,
2011; Yager et al., 2015; Yager and Robinson, 2015, 2013, 2010). The
rate of reduction of alcohol cue reactivity within- and between-“treat-
ment” sessions, and the size of post-“treatment” relapse-like return of
reactivity phenomena, are likely to be a function of how much ISS has
taken place. In part, this may be because more ISS means that IS-at-
tributed cues provide greater conditional reinforcing value, a property
of IS that may make it difficult for some individuals to distinguish re-
inforcement from non-reinforcement of the original cue associa-
tions—something which has been demonstrated in non-human animals
(Ahrens et al., 2016)—precluding subsequent reinforcement of alter-
native responses to the cue. Despite these limitations, it is people who
progressed to AUD via alcohol cue ISS who may derive the most clinical
benefit, at least in the long run, from CBM and CET since reductions in
alcohol cue reactivity may be irrelevant to recovery from AUD in people
who progressed to AUD via other etiological pathways.

Finally, it is worth mentioning that overcoming these limitations is
the focus of an active area of research. Work in this area suggests that it
may be possible to enhance within-session therapeutic learning for both
CBM and CET using transcranial stimulation of the prefrontal cortices
(den Uyl et al., 2018, 2017, 2016; Wietschorke et al., 2016) or acute
pharmacological augmentation of memory consolidation (Kiefer et al.,
2015; MacKillop et al., 2015). Additionally, it may be possible to har-
ness a period of memory lability induced by memory retrieval—the so-
called memory reconsolidation window (Nader and Einarsson, 2010;
Nader and Hardt, 2007)—to alter or “erase” alcohol cue reactivity by
interfering with or disrupting its neurobiological substrates using
pharmacological tools (e.g., in non-human animal models: (Barak et al.,
2013; Milton et al., 2012; Schramm et al., 2016; von der Goltz et al.,

2009); initial evidence in humans: (Das et al., 2018). It may also be
possible to “update" alcohol cues to a lower level of IS simply by de-
ploying therapeutic learning during the memory reconsolidation
window (e.g., in non-human animal models: (Cofresí et al., 2017); in-
itial evidence in humans: (Das et al., 2015; Hon et al., 2016)).

5.3.3. Response to pharmacological treatments attempting to dampen
alcohol craving

To the extent that the subjective experience of craving for alcohol
(viz., a strong explicit desire or urge to drink, perceived difficulty in
resisting a drink if it were offered) is a core symptom of AUD and/or an
important factor in lapse/relapse to AUD, medications that attempt to
dampen the subjective experience of craving for alcohol among in-
dividuals with AUD (for review, see: (Haass-Koffler et al., 2014)) can
play a critical role in harm reduction approaches to management of
AUD among non-treatment seeking individuals as well as supporting
behavior change and psychosocial treatment engagement among
treatment-seeking individuals. In short, anti-craving medications can
improve and/or save lives. Among these medications are several
pharmaceuticals already approved for AUD treatment (e.g., acampro-
sate, naltrexone), some pharmaceuticals that are used off-label for AUD
treatment (e.g., fluoxetine, bupropion), and others at earlier stages of
the medication development pipeline (e.g., aripiprazole).

Given diverse mechanisms of action, different anti-craving medi-
cations may differentially disrupt subjective experiences of craving
arising from the two IS system pathways to craving (Fig. 1: paths [i] and
[j]). Alcohol use-related obsessive or intrusive thoughts or desires may
reflect hyperactivity in either the indirect path (i) and/or the direct
path to craving (j), and anti-craving medications may decrease the level
of activity in these IS system pathways such that craving is not ex-
perienced. In this light, it might be tempting to see anti-craving medi-
cations as the pharmaceutical equivalent to behavioral treatments like
CET and CBM. That is, it may be tempting to conceptualize the anti-
craving effects of these pharmaceuticals as “response prevention” or
“response modification.” Indeed, acutely or chronically disrupting ac-
tivity in pathways (i) and (j) may prevent alcohol use that would have
otherwise occurred as a response to conscious craving for alcohol.
However, implicit alcohol “wanting” (Fig. 1: paths [f], [f.1], [f.2], and
[h]) may still impel alcohol seeking and drinking behaviors in certain
contexts despite the absence of conscious craving for alcohol and/or in
spite of conscious intentions to abstain from or moderate alcohol use.
Moreover, the subjective experience of craving may most often arise
from brain systems other than the IS system, such as those involved in
mediating non-automatic appraisal/evaluation processes that operate
at the level of consciousness. Craving originating in these systems may
be entirely unamenable to acute or chronic disruption of IS system
activity. Moreover, to the extent that certain brain systems are in place
to gate the direct and indirect IS system pathways to craving, then in
some individuals alcohol-related obsessive or intrusive thoughts may
arise not from hyperactivity in IS system pathways, but rather from
hypoactivity at the gates. Amplifying activity at the gates may require
medications that attempt to boost or restore activity in high-level ex-
ecutive function and response control-related brain systems. Never-
theless, to the extent that currently available and future anti-craving
medications facilitate reductions in the intensity and/or frequency of
alcohol exposure, they may be able to arrest the progression of alcohol
cue ISS and begin to reverse its underlying neuroadaptations. In doing
so, they may help treat a potential substrate for pathological craving
and preoccupation with alcohol. Thus, the efficacy of anti-craving
medications and their ultimate clinical benefit may be greater among
individuals who have progressed to AUD via alcohol cue ISS.

5.4. Conclusion

There is sufficient empirical evidence to support the idea that the
mechanism originally outlined in the incentive salience sensitization
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theory of addiction (ISST) (Robinson and Berridge, 1993) may be at the
core of alcohol use disorder (AUD) etiology for some individuals.
Throughout this review article we have referred to this etiological
pathway as “alcohol cue ISS” to emphasize that it is the motivational
significance and behavioral impact of alcohol-predictive cues that is
predicted to undergo sensitization, not the hedonic response to alcohol
ingestion. In other words, the mechanism of ISS involves sensitization
of alcohol “wanting,” not “liking.” Susceptibility to this etiological
pathway may be moderated by individual differences on traits such as
differential sensitivity to alcohol ingestion-induced feelings stimulation
v. sedation. Individuals who have undergone this etiological pathway
may find themselves especially at risk for cue reactivity-based relapse to
AUD after treatment. In general, there is need for continued in-
vestigation of ISST-predicted mechanisms, across units of analysis, in
the development of disordered alcohol use.
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