

© 2018 American Psychological Association 1064-1297/18/\$12.00

2018, Vol. 26, No. 4, 354–365 http://dx.doi.org/10.1037/pha0000206

Moderation of Alcohol Craving Reactivity to Drinking-Related Contexts by Individual Differences in Alcohol Sensitivity: An Ecological Investigation

Constantine J. Trela, Alexander W. Hayes, Bruce D. Bartholow, and Kenneth J. Sher University of Missouri and Midwest Alcoholism Research Center, St. Louis, Missouri Andrew C. Heath
Washington University School of Medicine and Midwest
Alcoholism Research Center, St. Louis, Missouri

Thomas M. Piasecki

University of Missouri and Midwest Alcoholism Research Center, St. Louis, Missouri

Laboratory cue exposure investigations have demonstrated that, relative to drinkers who report a high sensitivity to the pharmacologic effects of alcohol, low-sensitivity (LS) drinkers show exaggerated neurocognitive and behavioral reactivity to alcohol-related stimuli. The current study extends this line of work by testing whether LS drinkers report stronger cravings for alcohol in daily life. Data were from an ecological momentary assessment study in which participants (N = 403 frequent drinkers) carried a palmtop computer for 21 days and responded to questions regarding drinking behavior, alcohol craving, mood states, and situational context. Initial analyses identified subjective states (positive and negative mood, cigarette craving) and contextual factors (bar-restaurant location, weekend, time of day, presence of friend, recent smoking) associated with elevated craving states during nondrinking moments. Effects for nearly all these craving correlates were moderated by individual differences in alcohol sensitivity, such that the associations between situational factors and current alcohol craving were larger among LS individuals (as determined by a questionnaire completed at baseline). Complementary idiographic analyses indicated that self-reported craving increased when the constellation of situational factors more closely resembled individuals' observed drinking situations. Again, this effect was moderated by alcohol sensitivity, with greater craving response increases among LS drinkers. The findings align with predictions generated from theory and laboratory cue exposure investigations and should encourage further study of craving and incentive processes in LS drinkers.

Public Health Significance

This study extends prior laboratory-based work demonstrating that an individual's level of alcohol sensitivity is related to the degree of craving reported when exposed to alcohol cues. Here we provide evidence that the craving reactivity previously observed in highly controlled laboratory environments exists and functions similarly in the "real world."

Keywords: alcohol, alcohol sensitivity, craving, ecological momentary assessment, incentive salience

Individual drinkers differ markedly with respect to their sensitivity to the pharmacologic effects of alcohol (Li, 2000). A great deal of evidence has now indicated that a low-sensitivity (LS) or blunted response to alcohol is an important risk factor for alcohol use disorder (AUD; Ray, Bujarski, & Roche, 2016; Schuckit, 1980; Schuckit & Smith, 1996; Trim, Schuckit, & Smith, 2009). LS drinkers must

consume more alcohol to achieve desired psychological effects of drinking (Schuckit, 1994; Trela, Piasecki, Bartholow, Heath, & Sher, 2016). This heavy drinking style is thought to promote problematic alcohol involvement directly and also indirectly by fostering acquisition of coping motives for drinking, biasing alcohol-outcome expectancies to be more positive, and promoting affiliations with heavy-

This article was published Online First July 9, 2018.

Constantine J. Trela, Alexander W. Hayes, Bruce D. Bartholow, and Kenneth J. Sher, Department of Psychological Science, University of Missouri, and Midwest Alcoholism Research Center, St. Louis, Missouri; Andrew C. Heath, Department of Psychiatry, Washington University School of Medicine, and Midwest Alcoholism Research Center; Thomas M. Piasecki, Department of Psychological Science, University of Missouri, and Midwest Alcoholism Research Center.

This research was supported by National Institutes of Health Grants P50AA011998 (Andrew C. Heath), K05AA017688 (Andrew C. Heath),

K05AA017242 (Kenneth J. Sher), and T32AA013526 (Kenneth J. Sher). All authors contributed in a significant way to this article, and all read and approved the final article. Portions of this work were presented at the 40th Annual Scientific Meeting of the Research Society on Alcoholism, Denver, Colorado.

Correspondence concerning this article should be addressed to Constantine J. Trela, Department of Psychological Sciences, University of Missouri, 210 McAlester Hall, Columbia, MO 65211. E-mail: cjt36f@mail.missouri.edu

drinking peers (Schuckit, Smith, Anderson, & Brown, 2004; Schuckit et al., 2008). However, the mechanisms through which LS risk is translated into problematic drinking outcomes remain to be fully elucidated.

Theorists have long considered craving—an appetitive motivational state associated with an acute desire to approach and use a drug—to be an important feature of problematic substance use (e.g., Baker, Morse, & Sherman, 1987; Drummond, 2001; Sayette, 2016). A recent influential model, incentive sensitization theory (IST; Robinson & Berridge, 1993), identifies amplification of this drug-wanting process as a central mechanism in transition from casual drug use into addiction. Specifically, IST posits that neural systems that regulate drug wanting can become sensitized through repeated use of drugs such that cues associated with drug use become imbued with exaggerated incentive salience. Through this process, previously neutral drug-related stimuli can be transformed into "motivational magnets" that command attention, excite drug wanting, and impel drug use (Berridge & Robinson, 2003).

Motivated by IST, an emerging line of research has indicated that LS drinkers show stronger incentive motivational responses to alcohol-related cues relative to their high-sensitivity (HS) peers. The amplitude of the P3 brain event-related potential (ERP) component is modulated by the motivational significance (Nieuwenhuis, Aston-Jones, & Cohen, 2005; Schupp et al., 2000; Weinberg & Hajcak, 2010) or incentive value (Begleiter, Porjesz, Chou, & Aunon, 1983) of the eliciting stimulus and therefore can be used to investigate the motivational salience of target stimuli. Compared to HS drinkers, LS individuals show exaggerated P3 ERPs in response to alcohol images (Bartholow, Henry, & Lust, 2007). This sensitivity-related difference in neural response is specific to alcohol cues and is not observed in response to other classes of emotionally arousing stimuli (Bartholow, Lust, & Tragesser, 2010). LS risk has also been linked to attentional biases toward alcohol cues (Bailey & Bartholow, 2016; Shin, Hopfinger, Lust, Henry, & Bartholow, 2010) and a behavioral approach bias to alcohol images (Fleming & Bartholow, 2014). Taken together, these findings suggest that LS drinkers may be more motivationally reactive to environmental alcohol-related cues, perhaps resulting in greater craving reactivity that promotes alcohol use.

Trela et al. (2016) recently investigated how individual differences in self-reported alcohol sensitivity were related to subjective responses to alcohol during ecologically assessed drinking episodes. Findings indicated that alcohol sensitivity moderated the association between momentary estimated blood alcohol concentration (eBAC) and intoxication responses (e.g., ratings of buzz, dizziness). As anticipated, LS drinkers showed blunted intoxication responses compared to their HS peers. Based on prior laboratory cue exposure studies, Trela et al. (2016) tentatively hypothesized that LS would be associated with greater craving intensity during drinking episodes, which perforce entail exposure to interoceptive and exteroceptive alcohol cues. Contrary to predictions, alcohol sensitivity was not related to craving intensity and did not moderate the relation between eBAC level and craving.

In the current article, we present additional tests of the working hypothesis that alcohol sensitivity moderates craving reactivity in the natural environment. Data come from the same sample used by Trela et al. (2016), but the current investigation extends the prior work in two important ways. First, we focus here on data from moments recorded when participants were *not* actively drinking. Examining reports collected during active drinking potentially conflates the con-

tributions of direct pharmacologic effects of alcohol and cue reactivity to craving experience. A focus on nondrinking experiences may better isolate craving reactivity effects. Additionally, some theoretical models posit that conscious cravings are most likely to be experienced when drug-related cue complexes are encountered but automatized self-administration behavioral routines are blocked or resisted (Baker, Piper, McCarthy, Majeskie, & Fiore, 2004; Tiffany, 1990; Tiffany & Conklin, 2000). Notably, the existing laboratory evidence documenting greater incentive reactivity among LS drinkers has been obtained from participants in a sober state. Second, whereas our prior work was focused on the subjective effects associated with various eBAC levels, the current analyses specifically test whether LS moderates the associations between (a) various craving- and alcohol-related contexts and (b) craving for alcohol. This focus on potential LS moderation of craving reports under differing drinking-related stimulus conditions is more directly aligned with the designs of cue exposure investigations and the central tenets of IST.

Because direct assessments of exposure to alcohol cues were not incorporated into the electronic diary assessments, we used two indirect strategies to address the central hypothesis. First, we identified contexts and subjective states that prior research and theory have indicated might be considered triggers for craving and that were empirically associated with elevated momentary craving during nondrinking moments. We then tested whether any of the significant context-craving associations were moderated by individual differences in alcohol sensitivity. In a complementary idiographic approach, we used within-subject logistic regression analyses to predict the occurrence of drinking from the same set of contextual factors and subjective states. Predicted values from these models yielded, for every diary record, an index of the degree to which the constellation of momentary ratings resembled that individual's drinking context. We then conducted analyses, limited to nondrinking moments, testing whether higher predicted values (indexing a greater match between the current situation and that participant's observed drinking situations) were associated with elevated craving and whether this effect was moderated by alcohol sensitivity. Based on the existing laboratory cue exposure studies (e.g., Bartholow et al., 2007, 2010; Fleming & Bartholow, 2014), we expected that drinkers with lower self-reported alcohol sensitivity would show relatively greater reactivity to empirical antecedents of craving and in situations that more closely resembled their recorded drinking occasions.

Method

Participants

Participants were current drinkers (defined as self-report of four or more drinking occasions in the past 30 days) who were recruited through an e-mail listserv maintained by the University of Missouri that included students, faculty, and staff and also via flyers posted in the community and print commercial circulars to recruit individuals who were unaffiliated with the university. Participants were compensated up to \$150 for their full participation in the study, including attendance at study visits and return of the electronic-diary (ED) used in the field. The study intentionally oversampled current cigarette smokers because a major aim of the larger ecological momentary assessment project was to examine alcohol and tobacco co-use (Piasecki et al., 2011). Because of this goal of the overarching study, the

threshold to be considered a current smoker was low: self-report of smoking at least one cigarette per week at screening. Of the 418 participants who completed informed consent, 403 attended a diary training session and actively recorded data in the field using a studyissued ED and were included in the current analyses. Participants ranged in age from 18 to 70 years, but the majority were young adults (M = 23.3 years, SD = 7.2, Mdn = 21; 75% ages 18-22). The sample was balanced with respect to gender (n = 202 female, 50.1%). At baseline, participants reported consuming an average of 19.4 drinks per week in the past 30 days (SD = 15.6, Mdn = 15.1). A total of 258 participants (64.0%) were current smokers, of whom 184 (71.3%) reported smoking on a daily basis. At baseline, smokers reported consuming an average of 57.3 cigarettes per week over the past 30 days (SD = 72.3, Mdn = 45.2). Other data from this study have been presented in prior reports (Epler et al., 2014; Piasecki et al., 2011; Piasecki, Alley, et al., 2012; Piasecki, Wood, Shiffman, Sher, & Heath, 2012; Piasecki et al., 2014; Robertson et al., 2012; Tarantola, Heath, Sher, & Piasecki, 2017; Trela et al., 2016; Treloar, Piasecki, McCarthy, Sher, & Heath, 2015), but this article is the first to examine alcohol craving reactivity as a function of individual differences in alcohol sensitivity during nondrinking moments. Data were collected between January 2007 and November 2008. All participants provided informed consent, and the protocol was approved by the Institutional Review Boards of the University of Missouri and Washington University School of Medicine.

Procedure

Each participant attended two laboratory visits prior to the recording phase of the study. At the first session, participants completed a battery of questionnaires, including the self-report measure of alcohol sensitivity. Participants returned for a second training session during which they were instructed on how to initiate and complete reports on the ED. The recording phase of the study lasted 21 days beginning immediately following the end of the training session. During the recording phase, participants returned to the lab on four occasions to review compliance and troubleshoot any technical issues.

Diary Device and Protocol

The ED was implemented on Palm m500 palmtop computers (Palm Inc., Sunnyvale, CA) using customized software designed for the project by invivodata, Inc. (Pittsburgh, PA). During the recording phase, participants made five types of reports. Morning reports (MRs; n = 7,424) were completed once daily soon after awakening. The EDs doubled as alarm clocks, with participants' being able to program their device to deliver a wake-up alarm that also triggered the MRs. Participants were prevented from programming the wake-up alarm to occur after 12 noon and were also unable to access MRs regardless of the scheduled wake-up time after noon (i.e., participants who slept through the alarm could not make up the morning report late in the day). Each participant received up to five additional audible prompts on a random schedule each day to complete a report. These random prompts (RPs; n = 26,933) could occur as soon as the morning report was completed (or noon in cases where an MR was not completed) and were able to trigger until participants indicated they were retiring to sleep for the evening. Participants who were current smokers at the initial laboratory session were instructed to log a cigarette

report (CR) following each cigarette smoked in the course of the day. To prevent excessive assessment burden for heavy smokers, the ED administered questionnaires for only the first cigarette within a 6-hr block of time. Subsequent CRs within that time period returned a note that the cigarette had been logged and thanked the participant prior to reverting to the home screen of the ED. The current analyses include data from 6,605 CRs that were followed by a full set of diary items. When participants completed the first drink of alcohol in a drinking episode, they were asked to log a *drink report* (DR; n = 2,108). An automated set of prompted *drinking follow-ups* (DFUs; n = 8,435) oversampled experiences in the aftermath of drinking.

The current analyses chiefly focus on data collected during nondrinking moments (RPs, MRs, and CRs; n=39,774). Morning reports were assumed to be nondrinking moments. In RP and CR reports, participants were asked whether they had consumed any alcohol since making their last report. If they answered this question affirmatively, the report was reclassified as a drinking moment and triggered the drink report follow-ups described above. A total of 3,296 drink initiation (DI) moments occurred in the study (the sum of 2,108 DRs and 1,188 reclassified reports). These DI reports were used in the idiographic analyses to identify drinkinglike situations for each individual. DFUs were used in descriptive analyses.

Measures

Alcohol sensitivity. The Self-Rating of the Effects of Alcohol (SRE; Schuckit, Smith, & Tipp, 1997; Schuckit, Tipp, Smith, Wiesbeck, & Kalmijn, 1997) form was administered to evaluate individual differences in sensitivity to alcohol. The SRE queries the number of drinks that respondents require before they begin to feel different (i.e., experience any effect of alcohol), to feel dizzy or begin slurring speech, to begin stumbling or walking in an uncoordinated manner, and to pass out. These effects are assessed for three distinct time periods: the first five lifetime drinking episodes, the most recent period of drinking on a monthly basis for 3 months, and the heaviest lifetime period of drinking. Responses across all effects and time periods can be averaged to compute an overall SRE score (Ray, Hart, & Chin, 2011; Schuckit, Tipp, et al., 1997). Higher SRE scores indicate lower alcohol sensitivity (i.e., a higher number of drinks required to experience measured alcohol effects). Previous research has established the validity of the SRE, demonstrating that selfreported sensitivity is associated with subjective responses to alcohol challenge in controlled laboratory studies (Fleming et al., 2016; Schuckit, Smith, & Tipp, 1997; Schuckit, Tipp, et al., 1997).

For the current analyses, we scored the SRE using a standardized person-mean imputation method (Lee, Bartholow, McCarthy, Pedersen, & Sher, 2015) to produce a less biased estimate of sensitivity by accounting for the relationship between missing data (typically occurring when an individual has never experienced a queried alcohol effect) and overall SRE score. There was a significant difference between male (M = 8.84, SD = 3.02) and female (M = 6.57, SD = 2.16) raw SRE scores, t(401) = 8.69, p < .001. SRE scores were standardized within sex to avoid conflating sex differences and alcohol sensitivity. The resulting score indexes each participant's alcohol sensitivity relative to same-sex peers, with each 1-point change corresponding to a standard deviation increment.

State and contextual predictors of craving. Because the diary protocol did not directly assess participants' exposure to alcohol cues during nondrinking moments, we selected a number of diaryderived measures as possible craving triggers on the basis of existing research and theory. Bar-restaurant location was selected because these settings are likely to resemble drinking venues, and some of these have contained alcohol cues or served alcohol. Time of day and weekend (vs. weekday) were selected because they tend to be strongly related to alcohol consumption (Piasecki, McCarthy, Fiore, & Baker, 2008; Reich, Cummings, Greenbaum, Moltisanti, & Goldman, 2015; Wood, Sher, & Rutledge, 2007). Positive and negative affect were selected based on theories suggesting drug cravings are embedded in schematic networks organized around prototypic emotions and can be triggered by schema-congruent emotional states (Baker et al., 1987, 2004). Presence of a friend has been associated with alcohol use in ecological studies (aan het Rot, Russell, Moskowitz, & Young, 2008; Piasecki et al., 2008), and socializing is a major motive for drinking (Cooper, 1994). Finally, recent cigarette use and craving for cigarettes were selected in light of the frequent couse of alcohol and tobacco (Piasecki et al., 2011, 2008; Shiffman & Paty, 2006).

Diary measures of subjective states. The ED assessed a variety of subjective states using a common stem ("In the PAST 15 MINUTES, did you feel . . .?") at each report. These items were rated on a 5-point Likert scale ranging from 1 (not at all) to 5 (extremely). One item with "crave a drink" completing the item stem assessed alcohol craving. This was used as the primary outcome variable. Responses to three items (enthusiasm, happy, excited) were averaged to create a positive affect variable ($\alpha = .96$), and two items (sad, distressed) were averaged to form a negative affect composite ($\alpha = .88$). Current smokers also completed a single item assessing cigarette craving over the past 15 min in every report.

Diary measures of contextual features. In all ED assessments, participants were asked to report their current location by checking all applicable options from a list of possible locations (school, work, bar—restaurant, primary residence, outside, vehicle, and other). Responses were recoded to create a binary variable indicating endorsement (scored 1) or nonendorsement (0) of the bar-restaurant location. Similarly, a checklist item asking who the participant had been with in the past 15 min was recoded to form a binary variable indicating the presence or absence of friend.

All reports were date- and time-stamped automatically by the ED. We used this information to create a set of 3-hr blocks (e.g., midnight to 3 am) to represent time of day and to code each report as having occurred on a weekday or weekend. We defined *weekend* liberally as spanning from 5 p.m. on Thursday to 3 p.m. on Sunday because prior literature has suggested that drinking is heightened in this time frame relative to the rest of the week for college-age individuals (Del Boca, Darkes, Greenbaum, & Goldman, 2004; Wood et al., 2007), an age range containing the bulk of the current sample.

For current smokers, cigarette use in proximity to each diary entry was determined using a combination of assessments varying by record type. CRs were, by definition, assumed to occur after smoking. In RPs and DRs, participants were asked a yes—no question as to whether they had smoked a cigarette in the past 15 min. MRs included a similar item but used a different time referent ("since wakeup"). A binary current smoking variable was created, with smoking coded as having occurred if (a) the report was a CR

or (b) the report was an RP, DR, or MR and the participants answered the recent smoking question affirmatively.

Additional covariates. To more effectively isolate effects associated with individual differences in alcohol sensitivity, we covaried several additional person-level variables assessed in the baseline questionnaire battery. Impulsivity was assessed using the total score on the Barratt Impulsiveness Scale (Patton, Stanford, & Barratt, 1995). Family history of alcohol use disorder was measured by the Short Michigan Alcoholism Screening Test (SMAST; Crews & Sher, 1992; Selzer, Vinokur, & van Rooijen, 1975), using modified paternal (F-SMAST) and maternal (M-SMAST) versions. Participants were considered positive for family history if the F-SMAST or M-SMAST score was 5 or higher (Crews & Sher, 1992). Typical alcohol consumption patterns were represented using consumption items on the Alcohol Use Disorder Identification Test (AUDIT-C; Bush, Kivlahan, McDonell, Fihn, & Bradley, 1998), a set of three items from the AUDIT (Babor, Higgins-Biddle, Saunders, & Monteiro, 2001) assessing frequency of drinking, number of drinks per drinking occasion, and frequency of consuming six or more drinks per occasion.

Statistical Analysis

Diary data were analyzed using three-level mixed regression analyses (Level 1 = moment, Level 2 = day in study, Level 3 = participant) with random intercepts at day and participant levels. Participant records that did not include reports of all relevant independent and dependent variables were excluded in a casewise fashion.

One set of analyses used a nomothetic approach to (a) identify contextual and subjective features that were associated with elevated drinking craving across participants and (b) determine whether these effects were moderated by individual differences in alcohol sensitivity. These analyses were limited to diary data collected from nondrinking moments. First, a multivariate mixed regression analysis predicted current alcohol craving from six selected measures Level 1 variables (positive affect, negative affect, weekend, time of day, presence of a friend, and bar—

restaurant location), and covariates at Level 2 (whether any drinking occurred on that day) and Level 3 (impulsivity, typical alcohol consumption, family history status). A series of follow-up models were then estimated. Each included main effects for all of the predictors in the initial model but tested a single Level 1 Predictor × SRE interaction.

Momentary craving for cigarettes and recent smoking were assessed in only the subsample of current smokers. Consequently, we repeated the nomothetic analyses after limiting the data to reports from current smokers, adding cigarette craving and recent smoking as additional predictors of alcohol craving.

Another set of analyses used an idiographic approach (cf. Shiffman, Dunbar, & Ferguson, 2015; Shiffman & Paty, 2006). The first step used diary data from both nondrinking and drink initiation (DI) moments. For each participant, we conducted a multivariate logistic regression analysis in which the dependent measure was whether the record was a DI record (scored 1) or not (0). All subjective and contextual predictors tested in the nomothetic analyses were included in these logistic models.

Table 1
Fixed Effects From Multilevel Regression Analyses Predicting Momentary Alcohol Craving
From Diary-Measured Contextual and Subjective Factors

	Full	Full sample $(n = 403)$			Current smokers $(n = 258)$			
Level and predictor	\overline{b}	SE	p	b	SE	p		
Level 1								
Positive affect	.151	.006	<.001	.116	.007	<.001		
Negative affect	.197	.006	<.001	.159	.007	<.001		
Weekend	.169	.011	<.001	.157	.013	<.001		
Time of daya								
09:00-12:00	(Ref)			(Ref)				
12:00-15:00	.101	.012	<.001	.097	.014	<.001		
15:00-18:00	.249	.012	<.001	.252	.015	<.001		
18:00-21:00	.380	.012	<.001	.387	.015	<.001		
21:00-00:00	.351	.014	<.001	.366	.017	<.001		
00:00-03:00	.265	.031	<.001	.248	.033	<.001		
03:00-06:00	016	.047	.732	048	.053	.373		
06:00-09:00	041	.015	.006	042	.018	.020		
Friend	.083	.009	<.001	.096	.012	<.001		
Bar-restaurant	.144	.012	<.001	.138	.029	<.001		
Recent smoking				048	.010	<.001		
Crave cigarette				.167	.005	<.001		
Level 2								
Drinking day	.173	.014	<.001	.114	.017	<.001		
Level 3								
AUDIT-C	.047	.012	<.001	.056	.014	<.001		
Impulsivity	.003	.002	.142	.003	.003	.314		
Family history	055	.068	.417	057	.076	.450		

Note. (Ref) = referent; AUDIT-C = Consumption items on the Alcohol Use Disorder Identification Test. ^a Omnibus test for time: full analytic sample, F(7, 35,609.06) = 230.47, p < .001; current smokers, F(7, 25,084.58 = 165.18, p < .001.

Predicted values from the logistic models were saved. These values indicate the model-predicted probability that a given moment is a drinking occasion based on the configuration of immediate subjective and contextual features. Note that the use of single-subject logistic regression analyses means that the importance of particular predictors of drinking can vary across individuals. In the next step, we limited data to nondrinking moments and conducted a pooled multilevel regression analysis in which ratings of alcohol craving were predicted from selected covariates (drinking day, AUDIT-C, impulsivity, and family history), the idiographic model-predicted values (i.e., resemblance of the current moment to the participants' observed drinking occasions), SRE scores, and the interaction between SRE and drinking occasion resemblance. Again, this idiographic approach was repeated in the subsample of current smokers, including cigarette craving and recent smoking as additional predictors.

Results

Descriptive Analyses

Standardized SRE scores were strongly correlated with AUDIT-C (r = .52, p < .001), indicating that lower sensitivity individuals were heavier drinkers at study baseline. SRE was negatively correlated with participant age (r = -.18, p < .001), indicating that older participants tended to be more sensitive to the effects of alcohol. Family history of AUD, impulsivity, smoking status, sex, and proportion of drinking and smoking days during the diary

monitoring period were not significantly correlated with SRE $(rs \le |.06|, ps \ge .22)$.

Nomothetic Approach

Results from the initial multivariate models predicting alcohol craving from subjective and contextual factors are presented in Table 1. In the full analytic sample, all Level 1 predictors were simultaneously associated with current reports of craving for alcohol. Specifically, craving was higher when positive and negative affect were elevated, on the weekends relative to weekdays, in the presence of a friend, and when in a bar—restaurant location. Craving also varied significantly over time of day. Among current smokers, the same pattern of results was observed. Additionally, craving for alcohol was positively related to current levels of cigarette craving and lower when recent smoking was reported. Craving for alcohol was also stronger on days when drinking ultimately occurred. Of the Level 3 covariates, only AUDIT-C was significant, indicating heavier drinkers tended to report higher levels of craving.

Table 2 summarizes tests of interactions between alcohol sensitivity and particular subjective and contextual features. In the full sample, alcohol sensitivity significantly moderated the effects of all state and contextual predictors of craving. In current smokers,

¹ Reports of cigarette craving were significantly higher when recent smoking was reported (b = .482, p < .001). If momentary cigarette craving is omitted from the predictor set in the multivariate nomothetic model, recent smoking is positively associated with alcohol craving (b = .023, p = .03).

Table 2
State—Contextual Feature × Alcohol Sensitivity Interaction
Fixed Effects From Multilevel Regression Analyses Predicting
Alcohol Craving

Sample and State – Context × SRE	b	SE	p
Full sample $(n = 403)$			
Positive affect	.020	.006	.002
Negative affect	.029	.008	<.001
Weekend	.047	.014	.001
Time of day ^a			
09:00-12:00	(Ref)		
12:00-15:00	013	.015	.379
15:00-18:00	.001	.015	.930
18:00-21:00	.036	.015	.019
21:00-00:00	.030	.017	.085
00:00-03:00	.010	.042	.812
03:00-06:00	.061	.081	.450
06:00-09:00	.002	.020	.923
Friend	.039	.012	.001
Bar-restaurant	.069	.029	.018
Current smokers $(n = 258)$			
Recent smoking	022	.014	.111
Crave cigarette	.014	.006	.017

Note. Each model included a single State - Context \times SRE interaction term and included main effects for all predictors in Table 1. SRE = Self-Rating of the Effects of Alcohol; (Ref) = referent.

alcohol sensitivity moderated the association between current cigarette craving and alcohol craving but did not interact with recent smoking. Figure 1 illustrates the significant interactions by plotting marginal model-estimated means for alcohol craving for low- and high-sensitivity drinkers under varying contextual and subjective conditions. As predicted, the associations between state and contextual predictors and current alcohol craving were stronger among drinkers with lower alcohol sensitivity. The effects of situational factors and the moderating effects of alcohol sensitivity tended to be modest in magnitude. Elevated craving (i.e., a score greater than 1, the value associated with the *not at all* anchor point) was present in approximately 25% of all records, and mean levels of current craving for alcohol tended to be low overall (approximately 1.5–2.0 on a 1–5 scale).²

As noted above, craving was elevated on days when drinking ultimately occurred (see Table 1). We conducted supplementary analyses incorporating three-way Alcohol Sensitivity × State-Context × Drinking Day interaction terms to explore whether the effects in Table 2 were further moderated by day-level alcohol use outcomes. Findings revealed significant three-way interactions involving numerous states and contexts: positive affect interaction (b = .025, p < .001); negative affect interaction (b = .037, p < .001); friend interaction (b = .080, p < .001); smoked interaction (b = .071, p = .019); crave cigarette interaction (b = .032, p < .001); time of day omnibus interaction, F(8, 28,635.36) = 3.890, p < .001. To characterize these effects, we conducted separate analyses stratified by daylevel drinking outcome. Findings indicated that the two-way interactions between alcohol sensitivity and various craving-related states and contexts were observed primarily on days when drinking ultimately occurred (see Table 3).

Idiographic Approach

Inspection of the distribution of predicted probabilities (i.e., drinking occasion resemblance) in nondrinking diary records generated from the single-subject logistic regression analyses indicated that these values were low overall (M = .037, SD = .101; 98.6% of estimates < .50) with a modal value of zero (67.6% of nondrinking moments in the full sample). This was partly attributable to the strong association between time of day and drinking (Piasecki et al., 2011). Panel A of Figure 2 shows the frequency distributions for nondrinking and drinking diary records by time of day in the full sample, illustrating the virtual absence of drinking records between 3 a.m. and 3 p.m. (the unshaded area). As would be expected, the mean model-predicted probabilities hover close to zero in this time window but track higher between 3 p.m. and 3 a.m., when both nondrinking and drinking records were observed (shaded area, Panel B). Panel C shows that mean levels of alcohol craving in nondrinking moments were also elevated, primarily at times of day when drinking records were common. In light of these patterns, the primary idiographic analyses predicting craving were limited to 20,607 nondrinking diary records logged between 3 p.m. and 3 a.m., a period that is most clinically and practically relevant (i.e., drinking is plausible, and craving is more pronounced). Exploratory analyses indicated that temporal patterns of craving level and drinking resemblance were consistent across weekdays and weekends (profile $rs \ge .79$).

In both the full sample and subsample of current smokers, drinking occasion resemblance was robustly related to contemporaneous reports of alcohol craving (see Table 4). As the resemblance between the profile of immediate contextual and subjective conditions and those observed in drinking events increased, drinkers reported experiencing higher levels of desire to drink. These effects were moderated by individual differences in alcohol sensitivity, with lower sensitivity drinkers showing a stronger relationship between craving- and drinking-resembling situations. Figure 3 illustrates these effects. When the analyses were expanded to include data from all nondrinking moments, similar findings were obtained (see Table 4).

We again conducted supplementary analyses examining whether these two-way interactions were further moderated by day-level drinking occurrence. Using the records from the primary 3 p.m. to 3 a.m. time period, we found the three-way Alcohol Sensitivity \times Drinking Resemblance \times Drinking Day interactions was not significant in the full sample (b=.052, p=.677). The corresponding three-way interaction was significant in the smoker subsample (b=.492, p=.012). Analyses of the smokers stratified by day-level drinking outcome indicated that alcohol sensitivity moderated the effect of drinking resemblance on craving on days when drinking occurred (b=.298, p=.001) but not on nondrinking days (b=.030, p=.869). Results were similar when records from all nondrinking moments were analyzed.

^a Omnibus test for SRE × Time, F(7, 35,516.22) = 2.12, p = .038.

 $^{^2}$ A similar pattern of interaction effects was obtained when gamma regression analyses were performed using generalized linear mixed models for skewed outcomes (e.g., Neal & Simons, 2007). The only difference was that the SRE \times Cigarette Craving interaction was not significant (p=.09).

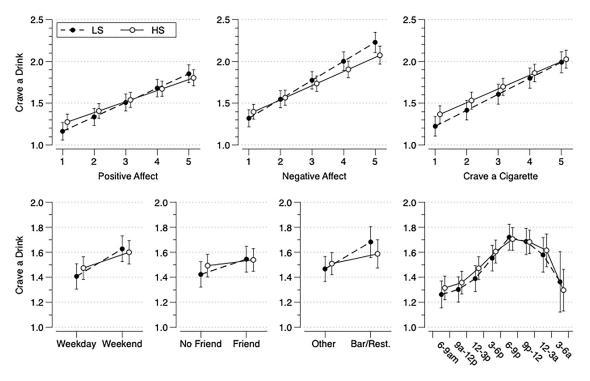


Figure 1. Model-predicted means and associated 95% confidence intervals illustrating significant interaction effects involving state—contextual features and alcohol sensitivity in nomothetic models. Lines are plotted at the mean of the top (LS) and bottom (HS) quartiles of the distribution of standardized person-mean imputed SRE scores (pooled across sexes) to illustrate sensitivity-related effects and at the mean level of all other covariates. LS = low sensitivity; HS = high sensitivity; Rest. = restaurant; SRE = Self-Rating of the Effects of Alcohol.

Discussion

Findings from this study complement evidence from prior laboratory cue exposure investigations indicating that LS drinkers show enhanced neurophysiological and behavioral reactivity to alcohol-related cues (Bartholow et al., 2007, 2010; Fleming & Bartholow, 2014; Shin et al., 2010) and extend those findings by demonstrating that LS drinkers show greater alcohol craving reactivity to drinking- and craving-related settings in the natural environment. This line of inquiry has drawn from incentive sensitization theory, which posits that drugs of abuse like alcohol can sensitize neural circuitry responsible for imbuing rewardpredicting cues with motivational salience (Robinson & Berridge, 1993, 2003, 2008). With repeated use, previously neutral cues associated with drug self-administration become attractive targets that may elicit behavioral approach accompanied by the subjective experience of wanting or craving (Berridge & Robinson, 2003). From this theoretical perspective, the current findings suggest that the development of a pathologically amplified, alcohol-focused wanting process may be an important mechanism through which LS confers risk for problematic drinking outcomes.

Preclinical studies have revealed that there are substantial individual differences in the susceptibility to sensitization of incentive motivation for reward-paired cues (Flagel, Akil, & Robinson, 2009). These findings suggest that there may be multiple pathways to addiction, with perhaps only a subset of cases attributable to sensitized drug wanting and exaggerated cue reactivity (Robinson, Yager, Cogan, & Saunders, 2014). Bartholow et al. (2010) found

that LS status moderated the P3 amplitude to alcohol cue exposure when controlling for other AUD risk factors such as impulsivity and familial alcoholism. In a cue exposure study involving young adult smokers, individual differences in the severity of tobacco dependence did not moderate P3 responses to smoking images (Piasecki, Fleming, Trela, & Bartholow, 2017). However, in this same study, smokers who reported lower alcohol sensitivity showed larger neural responses to smoking images compared to their higher sensitivity peers. Taken together, such findings suggest exaggerated incentive salience is not an essential or inevitable concomitant of addiction or addiction risk and indicate that a low subjective response to alcohol may be a trait marker that identifies "cue reactors." It is interesting that mesolimbic dopaminergic systems have been implicated in both incentive learning (Saunders & Robinson, 2012) and subjective response to alcohol (Setiawan et al., 2014). The possibility that LS risk and pathological drug wanting have overlapping neural underpinnings merits focused investigation in future research.

A prior analysis of data collected during active drinking episodes from the same sample focused on prediction of craving and other subjective states as a function of momentary eBAC level (Trela et al., 2016). Findings indicated that momentary eBAC was not related to craving intensity. Furthermore, individual differences in alcohol sensitivity did not moderate the association between craving and eBAC (Trela et al., 2016). The current analyses focused more squarely on how craving responses were related to environmental and subjective setting conditions associated with

Table 3
State-Context × Alcohol Sensitivity Interactions From Analyses Predicting Alcohol Craving, Stratified by Day-Level Drinking Outcomes

	Drinking days			Nondrinking days		
Sample and SRE \times State-Context	b	SE	p	b	SE	p
Full sample $(n = 403)$						
Positive affect	.031	.009	<.001	.005	.009	.563
Negative affect	.037	.011	<.001	.020	.011	.066
Weekend	.037	.019	.053	.038	.021	.067
Time of day ^a						
09:00-12:00	(Ref)			(Ref)		
12:00-15:00	008	.021	.685	014	.021	.520
15:00-18:00	.019	.022	.383	020	.021	.331
18:00-21:00	.068	.021	.001	003	.021	.905
21:00-00:00	.023	.026	.380	.035	.022	.107
00:00-03:00	022	.050	.656	.154	.082	.058
03:00-06:00	.011	.107	.917	.01	.125	.939
06:00-09:00	.001	.027	.985	017	.028	.552
Friend	.074	.017	<.001	.001	.015	.933
Bar-restaurant	.078	.038	.040	.05	.045	.264
Current smokers ($n = 258$)						
Recent smoking	016	.015	.283	079	.029	.006
Crave cigarette	.01	.007	.119	.003	.01	.757

Note. Each model included a single State - Context \times SRE interaction term and included main effects for all Predictors in Table 1. SRE = Self-Rating of the Effects of Alcohol; (Ref) = referent.

craving and drinking. This focus on situational factors that may serve as learned triggers for craving (vs. alcohol dose) more clearly aligns with the tenets of IST upon that motivated prior cue exposure studies examining moderating effects of LS risk (e.g., Bartholow et al., 2007, 2010). This may account for the greater correspondence of the current findings with predictions extrapolated from the laboratory investigations (e.g., Fleming & Bartholow, 2014; Trela et al., 2016). It is also possible that the craving reactivity and effects of trait moderators of such reactivity are more evident when alcohol has not been consumed (e.g., Baker et al., 2004; Tiffany, 1990). However, analyses focused on reactivity to discrete situational features during active alcohol use might show effects similar to those found here.

The strength of the moderating effect that alcohol sensitivity had on the relationship between the state and contextual predictors of craving depended in part on whether drinking ultimately occurred on a given day. The meaning of these effects is uncertain on present evidence. One possibility is that cravings triggered by environmental contexts or internal states sometimes impel individuals to initiate drinking, and this process may be more prominent in LS drinkers. If so, limiting analyses to days on which drinking occurred would tend to reveal an excess of state-/context craving reactivity in LS drinkers compared to their higher sensitivity peers, for whom other factors may be more influential in drink initiation. A second possibility is that planned drinking later in the day (e.g., happy hour following work) might elicit anticipatory craving that operates differentially based on one's alcohol sensitivity. Unfortunately, the present data do not allow us to fully evaluate these alternative explanations.

Although these "real world" observations generally accord with our prior laboratory findings, several caveats must be noted. Chief among these is that due to observational design, we cannot definitively state that increases in craving were caused by exposure to the putative situational triggers. It is theoretically possible that the increases in craving observed in the study were caused by a variable(s) that we did not measure via the ED or at the participants' baseline laboratory visit. In addition, average levels of self-reported craving for alcohol were low during nondrinking moments. Furthermore, the effects of drinking- and craving-related settings and their moderation by LS on craving tended to be modest in magnitude. These observations appear incongruent with the theoretical expectation that drug-related cues become powerful "motivational magnets" that are pathologically wanted and potentially question the clinical relevance of the findings. On the other hand, incentive sensitization theory recognizes that under differing conditions, mesolimbic drug-wanting responses may be evident at various levels of awareness, ranging from subtle unconscious biasing of attention and motivation to more intense desire with explicit awareness of craving experience (Berridge & Robinson, 2016). From this perspective, even low levels of self-reported craving may be theoretically interesting, tapping a comparatively high threshold on the continuum of possible incentive salience "wanting" outcomes. However, such distinctions also suggest that self-reported craving ratings may represent rather blunt instruments for investigating incentive salience effects in ecological studies. In future work, it would be valuable to incorporate additional ambulatory measures that may be more sensitive to subtler effects, such as mobile visual dot-probe or Stroop tasks (Kerst & Waters, 2014; Marhe, Waters, van de Wetering, & Franken, 2013).

A second important caveat is that the diary protocol did not incorporate direct assessments of exposure to alcohol cues per se. We used both a theory-based nomothetic approach and an empirically derived idiographic method to identify states and settings that were associated with craving and alcohol use occasions.

^a Omnibus test for SRE \times Time on drinking days, F(7, 21,100.47) = 2.57, p = .012. Omnibus test for SRE \times Time on nondrinking days, F(7, 14,368.72 = 1.67, p = .112.

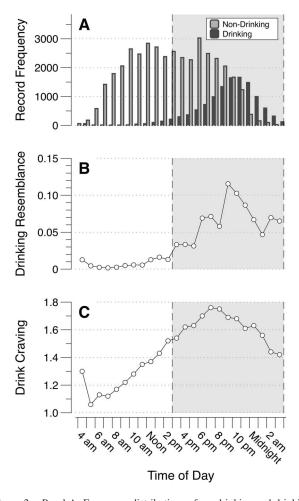


Figure 2. Panel A: Frequency distributions of nondrinking and drinking (both drink initiation records and drinking follow-ups) diary records as a function of time of day. Panel B: Mean predicted values (i.e., drinking occasion resemblance) from participant-stratified logistic regression analyses in the full sample by time of day. Panel C: Mean ratings of alcohol craving in the full sample by time of day. The shaded area (3 p.m. to 3 a.m.) was selected as the focus of primary idiographic analyses.

Findings from both approaches provide evidence linking LS risk with a general craving reactivity in the natural environment, but they cannot directly establish that these effects arise as a result of incentive sensitization or associative learning. Of the contexts examined here, the bar-restaurant location is likely the best indirect proxy for exposure to discrete environmental alcohol-related cues. However, our brief assessment of physical locations did not allow us to determine which of these situations actually contained such cues. It is possible that alcohol cues were absent in a large subset of occasions for which bar-restaurant was endorsed (e.g., fast food outlets). The theoretical relevance of other of the correlates of craving to IST can be questioned. For example, positive and negative affect were tested on the assumption that they produce interoceptive cues that may become associated with drinking through associative learning (Baker et al., 1987, 2004). The intensities of these affective states were empirically associated with elevated craving, but it is possible that this is not attributable to

their having acted as conditioned alcohol cues. A lower subjective response to alcohol is hypothesized to foster acquisition of coping motives for drinking (Schuckit et al., 2004), which might explain why negative affect is accompanied by an elevated desire to drink in LS individuals. Similarly, the presence of a friend could be associated with higher craving through mechanisms that have little to do with associative learning. LS individuals are expected to selectively affiliate with heavy-drinking peers (Schuckit et al., 2004). If so, their friends may be more likely to directly invite or pressure them to drink compared to the company kept by higher sensitivity drinkers. Future ecological studies are needed to more strictly probe incentive sensitization mechanisms in LS drinkers. It will be important to determine whether similar findings are observed when participants explicitly report noticing alcohol cues (e.g., Begh et al., 2016) or when cue presentations are manipulated directly via the mobile device (e.g., Wray, Godleski, & Tiffany, 2011).

The current study did not formally investigate whether individual differences in craving reactivity were associated with problematic drinking outcomes. Prior reports from this sample indicated that individual differences in alcohol sensitivity were not associated with drinking frequency (Piasecki, Alley, et al., 2012). However, relative to their high-sensitivity peers, LS drinkers had steeper rising slopes of estimated blood alcohol concentration when drinking (Trela et al., 2016) and were more likely to report hangovers the morning after drinking (Piasecki, Alley, et al., 2012). Indirectly, such findings suggest craving reactivity in nondrinking moments might be more related to the speed, quantity, or consequences of consumption than to the likelihood of alcohol use initiation. This remains to be tested formally in future studies. Although these downstream consequences require additional investigation, documenting a relation between LS risk and realworld craving responses is itself significant given the inclusion of craving as an AUD diagnostic criterion in the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (Hasin et al., 2013).

The models included a number of covariates at the day and person levels in an attempt to isolate effects uniquely associated with alcohol sensitivity. It is possible that these covariate controls were overly stringent (Meehl, 1971). For example, a pattern of heavy alcohol consumption, such as captured by the AUDIT-C, might be considered to represent a fundamental expression of LS risk, potentially playing an important causal role in translating a latent vulnerability into an active craving reactivity phenotype. If so, the current findings might understate the true relation between alcohol sensitivity and craving response in daily life.

A final caveat is that the participants in the current study were not administered the neurocognitive and behavioral tasks used to identify incentive salience effects in our prior laboratory studies (Bartholow et al., 2007, 2010; Fleming & Bartholow, 2014; Shin et al., 2010). Thus, it remains to be empirically established that responses on such tasks are associated with self-reported cravings for alcohol in the natural environment. Comprehensive, multimethod studies are needed to confirm that various putative indicators of incentive salience that have been associated with LS risk indeed tap a common psychological process.

In summary, drinkers who report a lower level of sensitivity to alcohol report larger changes in craving when encountering craving- and drinking-related states and contexts. The findings

Table 4
Fixed Effects From Idiographic Models Predicting Alcohol Craving

	Full s	Full sample $(n = 403)$			Current smokers $(n = 258)$		
Model and predictor	b	SE	p	b	SE	p	
Limited to 3 p.m. to 3 a.m.							
Intercept	.512	.229	.026	.431	.303	.156	
Drinking day	.307	.021	<.001	.242	.027	<.001	
AUDIT-C	.073	.018	<.001	.086	.023	<.001	
Impulsivity	.007	.003	.031	.007	.004	.078	
Family history	097	.089	.280	065	.111	.556	
SRE	070	.051	.173	099	.068	.147	
Drink occasion resemblance	1.106	.049	<.001	1.116	.062	<.001	
SRE × Predicted Value	.298	.064	<.001	.272	.082	.001	
All records							
Intercept	.611	.192	.002	.519	.245	.035	
Drinking day	.172	.014	<.001	.139	.018	<.001	
AUDIT-C	.055	.015	<.001	.067	.019	<.001	
Impulsivity	.005	.003	.030	.006	.003	.063	
Family history	065	.075	.388	044	.090	.627	
SRE	035	.043	.410	068	.055	.215	
Drink occasion resemblance	1.765	.040	<.001	1.842	.051	<.001	
SRE × Drink Occasion Resemblance	.192	.052	<.001	.164	.068	.015	

Note. AUDIT-C = Consumption items of the Alcohol Use Disorder Identification Test; SRE = Self-Rating of the Effects of Alcohol.

align with predictions generated from theory and laboratory cue exposure investigations and should encourage further study of craving processes in LS drinkers. Theoretical inferences are constrained by several important caveats arising from limitations in the assessment protocol. Future investigations with specialized assessments are needed to more sensitively probe whether the kinds of craving effects seen here are largely attributable to heightened reactivity to alcohol-related cues in the manner anticipated by IST. It is important to note that the current study had the potential to produce evidence disconfirming the basic assertion that LS drinkers show greater craving reactivity, which could have cast doubt on the tenability of our hypothesis. This initial evidence provides a foundation for more rigorous and probative follow-on

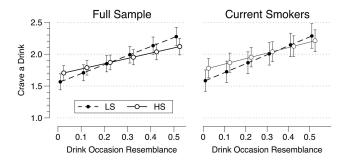


Figure 3. Model-predicted mean ratings of momentary alcohol craving and associated 95% confidence intervals illustrating Alcohol Sensitivity \times Contextual Resemblance to Drinking Situations interactions from idiographic models, using records occurring between 3 p.m. and 3 a.m. Lines are plotted at the mean of the top (LS) and bottom (HS) quartiles of the distribution of standardized person-mean imputed SRE scores (pooled across sexes) to illustrate sensitivity-related effects and at the mean level of all other covariates. LS = low sensitivity; HS = high sensitivity; SRE = Self-Rating of the Effects of Alcohol.

studies of incentive salience wanting and low subjective response to alcohol.

References

aan het Rot, M., Russell, J. J., Moskowitz, D. S., & Young, S. N. (2008). Alcohol in a social context: Findings from event-contingent recording studies of everyday social interactions. *Alcoholism: Clinical and Experimental Research*, 32, 459–471. http://dx.doi.org/10.1111/j.1530-0277 .2007.00590.x

Babor, T. R., Higgins-Biddle, J. C., Saunders, J. B., & Monteiro, M. G. (2001). The Alcohol Use Disorders Identification Test: Guidelines for use in primary care (2e). Geneva, Switzerland: World Health Organization.

Bailey, K., & Bartholow, B. D. (2016). Alcohol words elicit reactive cognitive control in low-sensitivity drinkers. *Psychophysiology*, 53, 1751–1759. http://dx.doi.org/10.1111/psyp.12741

Baker, T. B., Morse, E., & Sherman, J. E. (1987). The motivation to use drugs: A psychobiological analysis of urges. In C. Rivers (Ed.), *The Nebraska Symposium on motivation: Vol. 34. Alcohol use and abuse* (pp. 257–323). Lincoln, Nebraska: University of Nebraska Press.

Baker, T. B., Piper, M. E., McCarthy, D. E., Majeskie, M. R., & Fiore, M. C. (2004). Addiction motivation reformulated: An affective processing model of negative reinforcement. *Psychological Review*, 111, 33–51. http://dx.doi.org/10.1037/0033-295X.111.1.33

Bartholow, B. D., Henry, E. A., & Lust, S. A. (2007). Effects of alcohol sensitivity on P3 event-related potential reactivity to alcohol cues. *Psychology of Addictive Behaviors*, 21, 555–563. http://dx.doi.org/10.1037/ 0893-164X.21.4.555

Bartholow, B. D., Lust, S. A., & Tragesser, S. L. (2010). Specificity of P3 event-related potential reactivity to alcohol cues in individuals low in alcohol sensitivity. *Psychology of Addictive Behaviors*, 24, 220–228. http://dx.doi.org/10.1037/a0017705

Begh, R., Smith, M., Ferguson, S. G., Shiffman, S., Munafò, M. R., & Aveyard, P. (2016). Association between smoking-related attentional bias and craving measured in the clinic and in the natural environment.

- Psychology of Addictive Behaviors, 30, 868-875. http://dx.doi.org/10.1037/adb0000231
- Begleiter, H., Porjesz, B., Chou, C. L., & Aunon, J. I. (1983). P3 and stimulus incentive value. *Psychophysiology*, 20, 95–101. http://dx.doi.org/10.1111/j.1469-8986.1983.tb00909.x
- Berridge, K. C., & Robinson, T. E. (2003). Parsing reward. Trends in Neurosciences, 26, 507–513. http://dx.doi.org/10.1016/S0166-2236 (03)00233-9
- Berridge, K. C., & Robinson, T. E. (2016). Liking, wanting, and the incentive-sensitization theory of addiction. *American Psychologist*, 71, 670–679. http://dx.doi.org/10.1037/amp0000059
- Bush, K., Kivlahan, D. R., McDonell, M. B., Fihn, S. D., & Bradley, K. A. (1998). The AUDIT alcohol consumption questions (AUDIT-C): An effective brief screening test for problem drinking. *Archives of Internal Medicine*, 158, 1789–1795. http://dx.doi.org/10.1001/archinte.158.16.1789
- Cooper, M. L. (1994). Motivations for alcohol use among adolescents: Development and validation of a four-factor model. *Psychological Assessment*, 6, 117–128. http://dx.doi.org/10.1037/1040-3590.6.2.117
- Crews, T. M., & Sher, K. J. (1992). Using adapted short MASTs for assessing parental alcoholism: Reliability and validity. *Alcoholism: Clinical and Experimental Research*, 16, 576–584. http://dx.doi.org/10 .1111/j.1530-0277.1992.tb01420.x
- Del Boca, F. K., Darkes, J., Greenbaum, P. E., & Goldman, M. S. (2004).
 Up close and personal: Temporal variability in the drinking of individual college students during their first year. *Journal of Consulting and Clinical Psychology*, 72, 155–164. http://dx.doi.org/10.1037/0022-006X.72.2.155
- Drummond, D. C. (2001). Theories of drug craving, ancient and modern. Addiction, 96, 33–46. http://dx.doi.org/10.1046/j.1360-0443.2001.961333.x
- Epler, A. J., Tomko, R. L., Piasecki, T. M., Wood, P. K., Sher, K. J., Shiffman, S., & Heath, A. C. (2014). Does hangover influence the time to next drink? An investigation using ecological momentary assessment. Alcoholism: Clinical and Experimental Research, 38, 1461–1469. http:// dx.doi.org/10.1111/acer.12386
- Flagel, S. B., Akil, H., & Robinson, T. E. (2009). Individual differences in the attribution of incentive salience to reward-related cues: Implications for addiction. *Neuropharmacology*, 56(Suppl. 1), 139–148. http://dx.doi.org/10.1016/j.neuropharm.2008.06.027
- Fleming, K. A., & Bartholow, B. D. (2014). Alcohol cues, approach bias, and inhibitory control: Applying a dual process model of addiction to alcohol sensitivity. *Psychology of Addictive Behaviors*, 28, 85–96. http://dx.doi.org/10.1037/a0031565
- Fleming, K. A., Bartholow, B. D., Hilgard, J., McCarthy, D. M., O'Neill, S. E., Steinley, D., & Sher, K. J. (2016). The Alcohol Sensitivity Questionnaire: Evidence for construct validity. *Alcoholism: Clinical and Experimental Research*, 40, 880–888. http://dx.doi.org/10.1111/acer.13015
- Hasin, D. S., O'Brien, C. P., Auriacombe, M., Borges, G., Bucholz, K., Budney, A., . . . Grant, B. F. (2013). *DSM*–5 criteria for substance use disorders: Recommendations and rationale. *American Journal of Psychiatry*, 170, 834–851. http://dx.doi.org/10.1176/appi.ajp.2013.12060782
- Kerst, W. F., & Waters, A. J. (2014). Attentional retraining administered in the field reduces smokers' attentional bias and craving. *Health Psychology*, 33, 1232–1240. http://dx.doi.org/10.1037/a0035708
- Lee, M. R., Bartholow, B. D., McCarthy, D. M., Pedersen, S. L., & Sher, K. J. (2015). Two alternative approaches to conventional person-mean imputation scoring of the Self-Rating of the Effects of Alcohol Scale (SRE). *Psychology of Addictive Behaviors*, 29, 231–236. http://dx.doi.org/10.1037/adb0000015
- Li, T. K. (2000). Pharmacogenetics of responses to alcohol and genes that influence alcohol drinking. *Journal of Studies on Alcohol*, 61, 5–12. http://dx.doi.org/10.15288/jsa.2000.61.5
- Marhe, R., Waters, A. J., van de Wetering, B. J. M., & Franken, I. H. A. (2013). Implicit and explicit drug-related cognitions during detoxification treatment are associated with drug relapse: An ecological momen-

- tary assessment study. *Journal of Consulting and Clinical Psychology*, 81, 1–12. http://dx.doi.org/10.1037/a0030754
- Meehl, P. E. (1971). High school yearbooks: A reply to Schwarz. *Journal of Abnormal Psychology*, 77, 143–148. http://dx.doi.org/10.1037/h0030750
- Neal, D. J., & Simons, J. S. (2007). Inference in regression models of heavily skewed alcohol use data: A comparison of ordinary least squares, generalized linear models, and bootstrap resampling. *Psychology of Addictive Behaviors*, 21, 441–452. http://dx.doi.org/10.1037/ 0893-164X.21.4.441
- Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. D. (2005). Decision making, the P3, and the locus coeruleus-norepinephrine system. *Psychological Bulletin*, 131, 510–532. http://dx.doi.org/10.1037/0033-2909.131.4.510
- Patton, J. H., Stanford, M. S., & Barratt, E. S. (1995). Factor structure of the Barratt Impulsiveness Scale. *Journal of Clinical Psychology*, 51, 768–774. http://dx.doi.org/10.1002/1097-4679(199511)51:6<768:: AID-JCLP2270510607>3.0.CO;2-1
- Piasecki, T. M., Alley, K. J., Slutske, W. S., Wood, P. K., Sher, K. J., Shiffman, S., & Heath, A. C. (2012). Low sensitivity to alcohol: Relations with hangover occurrence and susceptibility in an ecological momentary assessment investigation. *Journal of Studies on Alcohol and Drugs*, 73, 925–932. http://dx.doi.org/10.15288/jsad.2012.73.925
- Piasecki, T. M., Cooper, M. L., Wood, P. K., Sher, K. J., Shiffman, S., & Heath, A. C. (2014). Dispositional drinking motives: Associations with appraised alcohol effects and alcohol consumption in an ecological momentary assessment investigation. *Psychological Assessment*, 26, 363–369. http://dx.doi.org/10.1037/a0035153
- Piasecki, T. M., Fleming, K. A., Trela, C. J., & Bartholow, B. D. (2017).
 P3 event-related potential reactivity to smoking cues: Relations with craving, tobacco dependence, and alcohol sensitivity in young adult smokers. *Psychology of Addictive Behaviors*, 31, 61–72. http://dx.doi.org/10.1037/adb0000233
- Piasecki, T. M., Jahng, S., Wood, P. K., Robertson, B. M., Epler, A. J., Cronk, N. J., . . . Sher, K. J. (2011). The subjective effects of alcoholtobacco co-use: An ecological momentary assessment investigation. *Journal of Abnormal Psychology*, 120, 557–571. http://dx.doi.org/10 .1037/a0023033
- Piasecki, T. M., McCarthy, D. E., Fiore, M. C., & Baker, T. B. (2008). Alcohol consumption, smoking urge, and the reinforcing effects of cigarettes: An ecological study. *Psychology of Addictive Behaviors*, 22, 230–239. http://dx.doi.org/10.1037/0893-164X.22.2.230
- Piasecki, T. M., Wood, P. K., Shiffman, S., Sher, K. J., & Heath, A. C. (2012). Responses to alcohol and cigarette use during ecologically assessed drinking episodes. *Psychopharmacology*, 223, 331–344. http://dx.doi.org/10.1007/s00213-012-2721-1
- Ray, L. A., Bujarski, S., & Roche, D. J. (2016). Subjective response to alcohol as a research domain criterion. *Alcoholism: Clinical and Experimental Research*, 40, 6–17. http://dx.doi.org/10.1111/acer.12927
- Ray, L. A., Hart, E. J., & Chin, P. F. (2011). Self-Rating of the Effects of Alcohol (SRE): Predictive utility and reliability across interview and self-report administrations. *Addictive Behaviors*, 36, 241–243. http://dx.doi.org/10.1016/j.addbeh.2010.10.009
- Reich, R. R., Cummings, J. R., Greenbaum, P. E., Moltisanti, A. J., & Goldman, M. S. (2015). The temporal "pulse" of drinking: Tracking 5 years of binge drinking in emerging adults. *Journal of Abnormal Psychology*, 124, 635–647. http://dx.doi.org/10.1037/abn0000061
- Robertson, B. M., Piasecki, T. M., Slutske, W. S., Wood, P. K., Sher, K. J., Shiffman, S., & Heath, A. C. (2012). Validity of the Hangover Symptoms Scale: Evidence from an electronic diary study. *Alcoholism: Clinical and Experimental Research*, 36, 171–177. http://dx.doi.org/10.1111/ j.1530-0277.2011.01592.x

- Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: An incentive-sensitization theory of addiction. *Brain Research Reviews*, 18, 247–291. http://dx.doi.org/10.1016/0165-0173(93)90013-P
- Robinson, T. E., & Berridge, K. C. (2003). Addiction. Annual Review of Psychology, 54, 25–53. http://dx.doi.org/10.1146/annurev.psych.54 .101601.145237
- Robinson, T. E., & Berridge, K. C. (2008). The incentive sensitization theory of addiction: Some current issues. *Philosophical Transactions of the Royal Society of London: Series B, Biological Sciences*, 363, 3137– 3146. http://dx.doi.org/10.1098/rstb.2008.0093
- Robinson, T. E., Yager, L. M., Cogan, E. S., & Saunders, B. T. (2014). On the motivational properties of reward cues: Individual differences. *Neu-ropharmacology*, 76, 450–459. http://dx.doi.org/10.1016/j.neuropharm .2013.05.040
- Saunders, B. T., & Robinson, T. E. (2012). The role of dopamine in the accumbens core in the expression of Pavlovian-conditioned responses. *European Journal of Neuroscience*, 36, 2521–2532. http://dx.doi.org/10 .1111/j.1460-9568.2012.08217.x
- Sayette, M. A. (2016). The role of craving in substance use disorders: Theoretical and methodological issues. *Annual Review of Clinical Psychology*, 12, 407–433. http://dx.doi.org/10.1146/annurev-clinpsy-021815-093351
- Schuckit, M. A. (1980). Self-rating of alcohol intoxication by young men with and without family histories of alcoholism. *Journal of Studies on Alcohol*, 41, 242–249. http://dx.doi.org/10.15288/jsa.1980.41.242
- Schuckit, M. A. (1994). Low level of response to alcohol as a predictor of future alcoholism. *American Journal of Psychiatry*, *151*, 184–189. http://dx.doi.org/10.1176/ajp.151.2.184
- Schuckit, M. A., & Smith, T. L. (1996). An 8-year follow-up of 450 sons of alcoholic and control subjects. *Archives of General Psychiatry*, *53*, 202–210. http://dx.doi.org/10.1001/archpsyc.1996.01830030020005
- Schuckit, M. A., Smith, T. L., Anderson, K. G., & Brown, S. A. (2004).
 Testing the level of response to alcohol: Social information processing model of alcoholism risk—A 20-year prospective study. *Alcoholism: Clinical and Experimental Research*, 28, 1881–1889. http://dx.doi.org/10.1097/01.ALC.0000148111.43332.A5
- Schuckit, M. A., Smith, T. L., & Tipp, J. E. (1997). The Self-Rating of the Effects of Alcohol (SRE) form as a retrospective measure of the risk for alcoholism. *Addiction*, 92, 979–988. http://dx.doi.org/10.1111/j.1360-0443.1997.tb02977.x
- Schuckit, M. A., Smith, T. L., Trim, R., Kreikebaum, S., Hinga, B., & Allen, R. (2008). Testing the level of response to alcohol-based model of heavy drinking and alcohol problems in offspring from the San Diego Prospective Study. *Journal of Studies on Alcohol and Drugs*, 69, 571–579. http://dx.doi.org/10.15288/jsad.2008.69.571
- Schuckit, M. A., Tipp, J. E., Smith, T. L., Wiesbeck, G. A., & Kalmijn, J. (1997). The relationship between Self-Rating of the Effects of alcohol and alcohol challenge results in ninety-eight young men. *Journal of Studies on Alcohol*, 58, 397–404. http://dx.doi.org/10.15288/jsa.1997.58
- Schupp, H. T., Cuthbert, B. N., Bradley, M. M., Cacioppo, J. T., Ito, T., & Lang, P. J. (2000). Affective picture processing: The late positive potential is modulated by motivational relevance. *Psychophysiology*, 37, 257–261. http://dx.doi.org/10.1111/1469-8986.3720257
- Selzer, M. L., Vinokur, A., & van Rooijen, L. (1975). A self-administered Short Michigan Alcoholism Screening Test (SMAST). *Journal of Studies on Alcohol*, 36, 117–126. http://dx.doi.org/10.15288/jsa.1975.36.117

- Setiawan, E., Pihl, R. O., Dagher, A., Schlagintweit, H., Casey, K. F., Benkelfat, C., & Leyton, M. (2014). Differential striatal dopamine responses following oral alcohol in individuals at varying risk for dependence. *Alcoholism: Clinical and Experimental Research*, 38, 126– 134. http://dx.doi.org/10.1111/acer.12218
- Shiffman, S., Dunbar, M. S., & Ferguson, S. G. (2015). Stimulus control in intermittent and daily smokers. *Psychology of Addictive Behaviors*, 29, 847–855. http://dx.doi.org/10.1037/adb0000052
- Shiffman, S., & Paty, J. (2006). Smoking patterns and dependence: Contrasting chippers and heavy smokers. *Journal of Abnormal Psychology*, 115, 509–523. http://dx.doi.org/10.1037/0021-843X.115.3.509
- Shin, E., Hopfinger, J. B., Lust, S. A., Henry, E. A., & Bartholow, B. D. (2010). Electrophysiological evidence of alcohol-related attentional bias in social drinkers low in alcohol sensitivity. *Psychology of Addictive Behaviors*, 24, 508–515. http://dx.doi.org/10.1037/a0019663
- Tarantola, M. E., Heath, A. C., Sher, K. J., & Piasecki, T. M. (2017). WISDM primary and secondary dependence motives: Associations with smoking rate, craving, and cigarette effects in the natural environment. *Nicotine & Tobacco Research*, 19, 1073–1079. http://dx.doi.org/10.1093/ntr/ntx027
- Tiffany, S. T. (1990). A cognitive model of drug urges and drug-use behavior: Role of automatic and nonautomatic processes. *Psychological Review*, 97, 147–168. http://dx.doi.org/10.1037/0033-295X.97.2.147
- Tiffany, S. T., & Conklin, C. A. (2000). A cognitive processing model of alcohol craving and compulsive alcohol use. *Addiction*, *95*(Suppl. 2), 145–153. http://dx.doi.org/10.1046/j.1360-0443.95.8s2.3.x
- Trela, C. J., Piasecki, T. M., Bartholow, B. D., Heath, A. C., & Sher, K. J. (2016). The natural expression of individual differences in self-reported level of response to alcohol during ecologically assessed drinking episodes. *Psychopharmacology*, 233, 2185–2195. http://dx.doi.org/10.1007/s00213-016-4270-5
- Treloar, H., Piasecki, T. M., McCarthy, D. M., Sher, K. J., & Heath, A. C. (2015). Ecological evidence that affect and perceptions of drink effects depend on alcohol expectancies. *Addiction*, 110, 1432–1442. http://dx.doi.org/10.1111/add.12982
- Trim, R. S., Schuckit, M. A., & Smith, T. L. (2009). The relationships of the level of response to alcohol and additional characteristics to alcohol use disorders across adulthood: A discrete-time survival analysis. *Alco-holism: Clinical and Experimental Research*, 33, 1562–1570. http://dx.doi.org/10.1111/j.1530-0277.2009.00984.x
- Weinberg, A., & Hajcak, G. (2010). Beyond good and evil: The time-course of neural activity elicited by specific picture content. *Emotion*, 10, 767–782. http://dx.doi.org/10.1037/a0020242
- Wood, P. K., Sher, K. J., & Rutledge, P. C. (2007). College student alcohol consumption, day of the week, and class schedule. *Alcoholism: Clinical* and Experimental Research, 31, 1195–1207. http://dx.doi.org/10.1111/j .1530-0277.2007.00402.x
- Wray, J. M., Godleski, S. A., & Tiffany, S. T. (2011). Cue-reactivity in the natural environment of cigarette smokers: The impact of photographic and in vivo smoking stimuli. *Psychology of Addictive Behaviors*, 25, 733–737. http://dx.doi.org/10.1037/a0023687

Received October 18, 2017
Revision received April 8, 2018
Accepted April 9, 2018