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Aggression is a complex, multifaceted behavior often caused

by numerous factors and expressed in innumerable ways. Like

all behaviors, aggression represents the outcome of sets of

biological and physiological processes emerging from the

brain. Although this may seem obvious, discovering the

specific neural circuits and neurophysiological processes

responsible for engendering aggressive responses has proven

anything but simple. The purpose of this review is to provide a

brief overview of discoveries in both human cognitive

neuroscience and animal behavioral neuroscience that have

begun to shed light—literally in some cases—on the heretofore

mysterious neural processes and connections responsible for

producing aggressive behavioral responses.
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Aggressive behavior, defined as any action that is

intended to harm (or threaten harm to) another individual

[1], is nearly ubiquitous across species [2]. Although

specific expressions of aggression (i.e., phenotypes) often

differ across species, the organization and function of

relevant brain structures is often highly similar. In partic-

ular, the neuronal organization of limbic structures in rat

and mouse brains is very comparable to that of human

brains [4��]. Also, multiple neurochemical systems that

regulate species-specific aggressive behaviors have co-

evolved in humans and mice, for example, making animal

models very useful analogues of human neural function in

this context [4��]. Thus, considerable research has

focused on discovering the neurophysiological and neu-

rochemical mechanisms responsible for aggression in

animals, one aim of which is to apply this knowledge

to understanding human aggression [5].
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Neuroanatomy of aggression
Prefrontal cortex

Given the extreme complexity and multi-functionality of

neural systems, researchers face a daunting challenge in

trying to understand the brain basis for complex behaviors

like aggression. Historically, knowledge on this topic has

come from case studies of individuals who suffered neural

lesions as the result of disease or injury. For example,

following the destruction of large portions of his medial

prefrontal cortex during a horrific accident, 19th Century

railroad worker Phineas Gage became fitful and irrever-

ent, “indulging at times in the grossest profanity (which

was not previously his custom),” and “at times pertina-

ciously obstinate” [6, p. 338]. Because some of Gage’s

mental abilities were spared (e.g., his memory; basic

functions like walking and talking), whereas his person-

ality and social behaviors were drastically altered, his case

produced some of the earliest discoveries related to

neural specialization. In particular, the location of Gage’s

injury provided some of the first clues concerning the

importance of the prefrontal cortex (PFC; primarily, Brod-

mann areas 8–11 and 44–47) in regulating anger and

aggression [7,8].

The PFC is associated with high-level cognition and

executive functioning [9], suggesting that aggressive

actions often result from a failure of self-regulatory con-

trol [10,11]. A large body of research has supported this

idea. For example, in one study, men who performed

poorly on cognitive tests thought to rely on PFC func-

tioning behaved more aggressively after being provoked

in a laboratory setting, relative to their better-performing

peers [12]. Another study linked increased human aggres-

sion to poor functioning in the orbital PFC [13], an area

severely damaged in Gage’s accident, confirming earlier

reports of increased aggression in rats following orbital

PFC lesions [14]. Other studies have used lesion [15,16]

and brain imaging data [17] to document the negative

association between PFC functioning and aggression.

Social behavior network

The areas of the brain that appear to control aggression

are not specialized for this purpose, leading some to

suggest that aggression is an emergent property of a larger

neural network involved in the regulation of social beha-

viors generally [18]. This proposed network includes the

anterior hypothalamic nucleus (AHN), ventromedial

hypothalamus (VMH), medial amygdala (MA), bilateral

septum (BLS), periaqueductal gray (PAG), and the bed

nucleus of the stria terminalis (BNST). PFC structures

are thought to interact with social-behavior network

structures by inhibiting or modulating their activation
www.sciencedirect.com
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[3]. Evidence supporting this interpretation has come

from studies with rats showing that lesions of the BLS,

BNST, AHN and MA tend to reduce aggression [19],

whereas lesions of the orbitofrontal cortex tend to

enhance aggression [14].

The hypothalamus appears to have particular significance

for aggression. Early lesion studies with cats established

the hypothalamus as important for the control of rage [20].

Focused electrical stimulation of the AHN has been

shown to increase aggression in both rats [21,22] and cats

[23], whereas micro-injection of a vasopressin-receptor

antagonist into the AHN reduces aggression in hamsters

[24]. Also, electrical stimulation of the AHN in rhesus

monkeys and the VHA in marmosets increases aggressive

displays and attacks on subordinate males [3]. Research

with humans likewise supports an important role for the

hypothalamus in triggering aggression [25].

Shedding light on neural function

Electrical and chemical stimulation studies represent a

major advance over earlier ‘knife cut’ lesion studies or

other neural ablation techniques, which often afford little

precision in targeting specific groups of neurons for study.

Still, even these more advanced techniques can be prob-

lematic because the electrical current, for example, acti-

vates both the neurons of interest and the fibers connect-

ing them with other structures, making it difficult to

pinpoint causal effects. Thankfully, optogenetics provides

a solution to this problem. By delivering a gene that

encodes light-sensitive protein onto the cells of interest,

scientists can engineer neurons in a targeted location to

be activated by specific frequencies of light delivered via

an implanted optic fiber [26�]. Critically, any photons that

inadvertently shine on nearby but not-genetically-altered

cells will have no effect on their activation.

Using this technique, recent studies have shown that very

specific neurons in the ventrolateral portion of the VMH

(VMHvl) in mice, a microscopic area comprised of only

around 10 000 cells, control male attack behaviors. One

study found that attack responses – but not social inves-

tigation responses – are strongly suppressed by VMHvl

inhibition, and that aggression returns to normal levels

when VMHvl activity is restored [27]. More recent work

provided evidence that aggression is an emergent prop-

erty of a neural network subserving a range of social

behaviors [28��]. By adjusting the intensity of the light

delivered to VMHvl neurons, the researchers could con-

trol whether mice engaged in sexual mounting behaviors

(low-intensity light) or attack behaviors (high-intensity

light). These data show both the exquisite sensitivity of

VMHvl neurons to varying levels of stimulation and that

the functional significance of their activation ranges dra-

matically, from the highly prosocial to the extremely

antisocial.
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Neurochemistry of aggression
Even within a circumscribed cluster like VMHvl, there is

variation with respect to the presence of receptors for

differing neurotransmitters. Thus, not all cells within a

given structure are responsive to the same kind of neu-

rochemical signaling and, ultimately, are not all responsi-

ble for regulating the same kinds of behaviors. Indeed,

Lee et al. [28��] found it was a relatively small subset of

VMHvl neurons, distinguished by the presence of a

receptor for the hormone estrogen, that were responsible

for the scalable mounting-to-attacking behaviors elicited

by optical stimulation (see also Ref. [29]).

Considerable research implicates the monoamine serotonin

in regulating aggressive responses. Serotonin playsan impor-

tant role in regulating affective responses, including those

implicated in reactive, angry aggression. In very simple

terms, too little serotonin can make people irritable and less

able to control anger, indirectly leading to aggression. In

correlational studies, brain serotonin levels have been nega-

tively related to violence in both humans [30,31] and pri-

mates [32,33]. More direct support for the role of serotonin in

aggression comes from experimental laboratory studies

showing that short-term reduction in serotonin levels,

achieved by decreasing dietary tryptophan, increases aggres-

sive responding, whereas increasing serotonin levels via

tryptophan supplements decreases aggressive responding

[34,35]. Brain imaging studies show a potential mechanism

for this effect. One study found that tryptophan-depleted

participants showed weaker co-activation of limbic (amyg-

dala) and prefrontal structures while viewing angry faces,

suggesting that prefrontal regulation of anger-related

responses is more difficult when serotonin levels are low

[36]. Drug studies similarly have shown that acutely increas-

ing serotonin levels via pharmacotherapy reduces aggression

in the short term [37,38], and prolonged exposure to medica-

tions that increase serotonin levels chronically reduce impul-

sive aggression in patients with personality disorders [39,40].

Importantly,however, theserotonin–aggression linkappears

toholdonlyforhigh-arousal, impulsiveor reactiveaggression

and not for low-arousal, planned or proactive aggression

[25,41], consistent with the more general role of serotonin

in regulating irritability (also see Ref. [42]).

Neural responses associated with aggression
Findings reviewed thus far have come from studies in which

neural structure and function have been manipulated.

Another class of studies involves measuring naturally occur-

ring neural responses either as aggressive behaviors are

enacted or as environmental cues associated with aggressive

behaviors are processed. This cognitive neuroscience

approach can establish links between aggression-related

triggers in the environment and the neural processes that

give rise to overt behavioral expressions of aggression.

A considerable amount of human aggression research is

concerned with factors in the environment (e.g., perceiving
Current Opinion in Psychology 2018, 19:60–64
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hostility in others; witnessing others’ aggressive acts) that

are believed to elicit or increase the likelihood of aggressive

responses. Studies of this type often involve participants

viewing violence-related stimuli while their brain activity is

measured. For example, one study showed that playing a

violent (vs. a nonviolent) video game for 25 min led to

reduced amplitude of the P3 (or P300) component of the

event-related brain potential (ERP) elicited by depictions

of real-life violence, but only among individuals low in prior

violent videogame experience [43�]. Habitual violent

gamers showed reduced P3 to depictions of violence

regardless of which videogame they played, replicating

findings from a previous correlational study [44]. Given

that P3 amplitude reflects the incentive value of eliciting

stimuli [45], these findings suggest that exposure to virtual

violence can lead to desensitization to real-life violence

(also see Ref. [46]).

Functional magnetic resonance imaging (fMRI) has been

used to identify the neural structures involved in proces-

sing violence and in regulating aggression [36]. In one

study, researchers reported a negative relation between

violence in game scenes and activation in the rostral

anterior cingulate cortex (rACC), amygdala, and orbito-

frontal cortex as participants played video games, struc-

tures implicated in affect/emotion-related processing and

self-regulation [47]. In another study, researchers found

that ACC and amygdala activity during violent (compared

to nonviolent) games was higher in individuals with

predominantly nonviolent (vs. violent) previous gaming

experience, suggesting that the violence depicted in the

games was more motivationally salient and emotionally

evocative among such individuals [48]. These results

complement those using ERPs [43,44,46], providing addi-

tional evidence for the desensitization hypothesis using a

different technique.

Other brain imaging studies complement the neuropsy-

chological data reviewed previously. In one study, women

who received injections of testosterone showed increased

activation to depictions of angry versus happy faces in

brain areas involved in reactive aggression, such as the

amygdala and hypothalamus [49]. In another study deci-

sions to retaliate against a provocateur were associated

with increased activity in nucleus accumbens (NAcc), a

structure strongly implicated in reward processing, and

greater NAcc during aggressive decisions predicted stron-

ger behavioral retaliation [50�]. Importantly, strength of

functional connectivity between NAcc and right ventro-

lateral PFC during aggressive decisions was associated

with reduced retaliatory aggression, supporting the notion

that strength of self-regulatory control is important for

modulating aggression.

Summary
The available biochemical, neuropsychological, and brain

imaging data all indicate areas of the prefrontal cortex and
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a social-behavior network – the hypothalamus in particu-

lar – as important for regulating a range of social beha-

viors, including aggression, across species. Moreover,

considerable evidence implicates serotonergic neuro-

transmission in regulating angry, reactive forms of aggres-

sion. Animal models using a wide range of species, from

tiny fruit flies to our primate cousins, have proven invalu-

able for understanding the neural bases of this kind of

aggression.

However, technological advances have made modern

humans much more adept at escalated forms of aggression

and violence compared to other animals. In the not-too-

distant past, causing physical harm to another person

meant engaging in hand-to-hand combat, in which the

perpetrator risked being injured as much as the victim.

Tools of war, from arrows and rifles to warships and

drones, have allowed humans to inflict massive amounts

of harm from long distances, often without directly con-

fronting or even seeing their victims. This more detached

form of aggression differs dramatically from the aggres-

sion perpetrated by other animals and even our relatively

recent human ancestors. It seems likely that the quantum

leap in humans’ ability to aggress in more detached and

emotionless ways represents a decoupling of aggressive

actions from the neurochemical and neurophysiological

processes that evolved to support functional aggression.

Given such divergence, it would seem that understanding

uniquely human forms of aggression and violence, such as

mass shootings and acts of war, likely will be achieved

primarily through human behavioral, neuropsychological

and psychophysiological research.
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